

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Data Warehouse Management Using SAP BW Alexander Prosser

What problems does a data warehouse answer ?

CEO: "We may have a problem in procurement. I have a feeling that we employ too many suppliers. We are not focused enough, and probably the issue is even growing. Give me a flexible analysis tool to check that out.

We should have all data in our SAP ECC system."

```
You (IT manager): "....?"
```


What can I expect of a Data Warehouse ?

What not ?

What can I expect of my consultants/IT professionals ?

How can I ensure that I get what I/my organisation needs ?

1980-ies: Functional software

1990-ies: Process orientation:

Business Process

EOUIS

Cross-company integration (e.g., supply chain management)

EFMD

EQUIS

Operational system	Data warehouse
Procurement	Vendor assessment
Sales and order processing	Analysis of customer behaviour
Production planning and shop floor control	Analysis of rework/reject and overdue production orders

A data warehouse is NOT a list generator.

A data warehouse is NOT an address database for mail merge operations.

It is an analytical tool for analysis and decision making.

	Operational system
Usage	Transaction-intensive (read and write)
Users	Relatively large number
Coverage	(In most cases) current data only

	Operational system	Data warehouse
Usage	Transaction-intensive (read and write)	Query-intensive (read only)
Users	Relatively large number	Relatively small number, unless used as a general reporting tool
Coverage	(In most cases) current data only	Current & historical data; time-dependent

Model (typical)	Operational system Data is organised according to a process	WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS
Data structure	Flat	

	Operational system	Data warehouse
Model (typical)	Data is organised according to a process	Data is organised according to a subject matter
Data structure	Flat	Multi-dimensional according to the subject matter

Modeling a Data Warehouse

... and data is multi-dimensional.

You have to unequivocally specify what you want ... before you sign the contract.

Otherwise, you will not get what you want.

You have to unequivocally specify what you want ... before you sign the contract.

Otherwise, you will not get what you want.

- => Dimensional Fact Modeling as a "language" to specify your needs and to assure the quality of the system delivered.
- => Conceptual system modeling is not an academic luxury item, but a means to save €€€

Let's design a data warehouse:

Please suggest a case from your experience.

STEP 1:

What is the fact I want to analyze ?

What are the key figures representing the fact ?

What do the key figures look like ?

Nominal: numerical coding without meaningful values

Ordinal: coding represents >< relationships, no meaningful sum

Interval: metric, but have a "beginning" and/or "end", hence, no meaningful sum

Rational: metric, any operation

STEP 2:

What are the axes in my analyses ?

What are their aggregation levels (if any) ?

STEP 3:

Are the axes of aggregation independent of one another ?

Are there any restrictions in aggregation ?

.

.

.

Operator	Nominal	Ordinal	Interval	Rational
Sum	No	No	No	\checkmark
Average	No	(√)	✓	✓
Minimum	No	✓	✓	✓
Maximum	No	\checkmark	✓	✓

•

WIRTSCHAFTS

UNIVERSITÄT WIEN VIENNA

	Some dimensions	All dimensions
Some aggregation operator	Semi-additive	Semi-additive
All aggregation operators	Semi -additive	Additive

·

.

STEP 4:

Are there any non-aggregation attributes ?

Do I have parallel hierarchies ?

STEP 5:

Where does the data come from ?

Do I need to reconcile data from different sources ?

Modeling Key Integration

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

EFMD

Modeling Field Integration

Modeling Content Integration

Case Study

Kontaktdaten ergänzen

Institut für Produktionsmanagement

Institute of Production Management Augasse 2-6, 1090 Vienna, Austria

Alexander Prosser

prosser@wu.ac.at http://prodman.wu.ac.at http://erp.wu.ac.at http://e-voting.at

