Conditional Independence in Continuous Domain¹

ETH zürich

Kartik G. Waghmare

¹Research funded by Swiss National Science Foundation Research Grant. January 15, 2025 1/33

Based on joint work²³⁴ with:

Prof. Victor Panaretos, EPFL

ъ

 $^{^2}$ Waghmare, K.G. and Panaretos, V.M., 2022. The Completion of Covariance Kernels.

³Waghmare, K.G. and Panaretos, V.M., 2024. Continuously Indexed Graphical Models.

⁴Waghmare, K.G. and Panaretos, V.M., 2023. The Positive-Definite Completion Problem.

Spine Bone Mineral Density: A Longitudinal Study⁵

■ Figure. The BMD measurements of ~100 individuals taken between the ages of 9 and 21 years.

⁵Bachrach, L.K., Hastie, T., Wang, M.C., Narasimhan, B. and Marcus, R., 1999. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. *The Journal of Clinical Endocrinology & Metabolism*, 84 (12), pp.4702-4712. Image: Clinical Endocrinology & Metabolism, 84 (12), pp.4702-4712.

Spine Bone Mineral Density: A Longitudinal Study⁵

■ **Figure.** The BMD measurements of ~100 individuals taken between the ages of 9 and 21 years.

January 15, 2025

3/33

• No individual was followed for longer than 5 years.

Covariance Estimation

• Figure. The pairs (s, t) s.t. BMD measurements of an individual for the both ages s and t are available.

January 15, 2025

3

Covariance Estimation

- Figure. The pairs (s, t) s.t. BMD measurements of an individual for the both ages s and t are available.
- The covariance can be estimated only over a relatively small region around the diagonal.

イロト イポト イヨト イヨト

January 15, 2025

Covariance Recovery

• Let $X = \{X_t : t \in I\}$ be a 2nd-order stochastic process on an interval $I \subset \mathbb{R}$ with mean zero and covariance K.

January 15, 2025

ъ

Covariance Recovery

- Let $X = \{X_t : t \in I\}$ be a 2nd-order stochastic process on an interval $I \subset \mathbb{R}$ with mean zero and covariance K.
- Given a consistent estimator \hat{K}_{Ω} of the partial covariance $K_{\Omega} = K|_{\Omega}$ is it possible to construct a consistent estimator of K?

イロト イボト イヨト イヨト

January 15, 2025

Covariance Recovery

- Let $X = \{X_t : t \in I\}$ be a 2nd-order stochastic process on an interval $I \subset \mathbb{R}$ with mean zero and covariance K.
- Given a consistent estimator \hat{K}_{Ω} of the partial covariance $K_{\Omega} = K|_{\Omega}$ is it possible to construct a consistent estimator of K?

イロト イボト イヨト イヨト

January 15, 2025

5/33

1. Under what conditions?

Covariance Recovery

- Let $X = \{X_t : t \in I\}$ be a 2nd-order stochastic process on an interval $I \subset \mathbb{R}$ with mean zero and covariance K.
- Given a consistent estimator \hat{K}_{Ω} of the partial covariance $K_{\Omega} = K|_{\Omega}$ is it possible to construct a consistent estimator of K?

イロト イボト イヨト イヨト

January 15, 2025

- 1. Under what conditions?
- 2. How? And how accurate?

Covariance Completion

• Under what conditions is it possible to extend a kernel $K_{\Omega} : \Omega \to \mathbb{R}$ to a covariance kernel K on I?

> < □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≥ January 15, 2025

Covariance Completion

• Under what conditions is it possible to extend a kernel $K_{\Omega} : \Omega \to \mathbb{R}$ to a reproducing kernel K on I?

1. Is there a unique completion? If not, how many completions can there be?

イロト イボト イヨト イヨト

January 15, 2025

3

Covariance Completion

• Under what conditions is it possible to extend a kernel $K_{\Omega} : \Omega \to \mathbb{R}$ to a reproducing kernel K on I?

- 1. Is there a unique completion? If not, how many completions can there be?
- 2. Is there a special completion which has a nice interpretation in terms of the process X?

January 15, 2025

Related Work

Fragmented Functional Data

- **Markov Chains:** Delaigle and Hall (2016).
- **2** Unique Completion: Delaigle, Hall, Huang, and Kneip (2021); Lin, Wang, and Zhong (2021), Descary and Panaretos (2019).

Positive-Definite Completion

- **1** Stationary on Z: Carathéodory (1907); Calderón and Pepinsky (1952).
- **2** Stationary on \mathbb{R} : Krein (1940); Rudin (1963).
- **3** Nonstationary on finite set: Dym and Gohberg (1981); Grone, Johnson, Sá, and Wolkowicz (1984).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの January 15, 2025

6/33

4 Nonstationary on \mathbb{R} : ?

Completion Formula

• Let K_{Ω} be a kernel such that

$$K_{I_1} = K_{\Omega}|_{I_1 \times I_1}$$
$$K_{I_2} = K_{\Omega}|_{I_2 \times I_2}$$

イロト イヨト イヨト

→ ∃ →

January 15, 2025

ъ

7/33

are reproducing kernels.

Completion Formula

• Let K_{Ω} be a kernel such that

$$K_{I_1} = K_{\Omega}|_{I_1 \times I_1}$$
$$K_{I_2} = K_{\Omega}|_{I_2 \times I_2}$$

are reproducing kernels.

• How to define K(s,t) such that K is a reproducing kernel?

イロト イヨト イヨト イヨト

January 15, 2025

- 2

Completion Formula

• Consider the subkernel $K_{I_1 \cap I_2}$. It has an RKHS

$$\mathcal{H} = \mathcal{H}(K_{I_1 \cap I_2})$$

Completion Formula

• Consider the subkernel $K_{I_1 \cap I_2}$. It has an RKHS

 $\mathcal{H} = \mathcal{H}(K_{I_1 \cap I_2})$

• And consider the cross-covariances $K_{\Omega}(t, \cdot) : u \mapsto K_{\Omega}(t, u)$ $K_{\Omega}(\cdot, s) : u \mapsto K_{\Omega}(u, s)$

< □ → < □ → < ≥ → < ≥ → < ≥ → < ≥ → </p>
January 15, 2025

7/33

for $u \in I_1 \cap I_2$.

Completion Formula

• Consider the subkernel $K_{I_1 \cap I_2}$. It has an RKHS

 $\mathcal{H} = \mathcal{H}(K_{I_1 \cap I_2})$

And consider the *cross-covariances*

$$K_{\Omega}(t, \cdot) : u \mapsto K_{\Omega}(t, u)$$
$$K_{\Omega}(\cdot, s) : u \mapsto K_{\Omega}(u, s)$$

for $u \in I_1 \cap I_2$.

Define

 $K(s,t) = \langle K_{\Omega}(s,\cdot), K_{\Omega}(\cdot,t) \rangle_{\mathcal{H}_{I_1 \cap I_2}}$ $(\Box) \langle \Box \rangle \langle$

Completion Formula

If we define $K_{\star}: I \times I \to \mathbb{R}$ as

$$K_{\star}(s,t) = \begin{cases} K_{\Omega}(s,t) & (s,t) \in \Omega\\ \langle K_{\Omega}(s,\cdot), K_{\Omega}(\cdot,t) \rangle_{\mathcal{H}} & \text{otherwise.} \end{cases}$$

7/33

the result is a valid covariance on I.

Completion Algorithm

The procedure can be iterated in many ways, but regardless of the manner of completion one recovers the same completion.

Completion Algorithm

The procedure can be iterated in many ways, but regardless of the manner of completion one recovers the same completion.

Completion Algorithm

The procedure can be iterated in many ways, but regardless of the manner of completion one recovers the same completion.

January 15, 2025

ъ

Completion Algorithm

The procedure can be iterated in many ways, but regardless of the manner of completion one recovers the same completion.

January 15, 2025

ъ

Completion Algorithm

The procedure can be iterated in many ways, but regardless of the manner of completion one recovers the same completion.

January 15, 2025

ъ

Completion Algorithm

The procedure can be iterated in many ways, but regardless of the manner of completion one recovers the same completion.

January 15, 2025

ъ

Estimation

Construction of K_{\star}

The formula (*) reduces to

$$\mathbf{R}_{p} = \left[\mathbf{J}_{p}^{-1/2}\mathbf{S}_{p}^{*}\right]^{*} \left[\mathbf{J}_{p}^{-1/2}\mathbf{D}_{p}\right]$$

Using the eigendecomposition

$$\mathbf{J}_p = \sum_{k=1}^\infty \lambda_{p,k} e_{p,k} \otimes e_{p,k}$$

we have

$$\boxed{\mathbf{R}_p = \sum_{k=1}^\infty \frac{1}{\lambda_{p,k}} \mathbf{S}_p e_{p,k} \otimes \mathbf{D}_p^* e_{p,k}}$$

▲□ ▶ ▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ か Q ○
January 15, 2025 9 / 33

Estimation

Construction of \hat{K}_{\star}

Using the eigendecomposition

$$\hat{\mathbf{J}}_p = \sum_{k=1}^{\infty} \hat{\lambda}_{p,k} \hat{e}_{p,k} \otimes \hat{e}_{p,k}$$

we have

$$\hat{\mathbf{R}}_p = \sum_{k=1}^{N(p)} rac{1}{\hat{\lambda}_{p,k}} \hat{\mathbf{S}}_p \hat{e}_{p,k} \otimes \hat{\mathbf{D}}_p^* \hat{e}_{p,k}$$

4回▶ 4回▶ 4 ■▶ 4 ■▶ 4 ■> ■ のQで
January 15, 2025 10 / 33

Illustration

Canonical Completion

Naturalness of Completion

If we have

$$K_{\Omega}(s,t) = \min(s,t)$$
 for $(s,t) \in \Omega$,

then the completion algorithm gives us

$$K_*(s,t) = \min(s,t)$$
 for $s, t \in I$.

→ Ξ →

January 15, 2025

3

Canonical Completion

Naturalness of Completion

In fact, the same applies for

Analytic covariances:

$$K(s,t) = e^{-(s-t)^2}, \cos(s-t), \dots$$

• Covariances of Markov Gaussian process:

$$K(s,t) = \min(s,t), e^{-|s-t|}, \dots$$

■ *Nice* finite rank covariances:

$$K(s,t) = st + s^2 t^2, \dots$$

 6 Kneip, A. and Liebl, D., 2020. On the optimal reconstruction of partially observed functional data. The Annals of Statistics, 48(3), pp.1692-1717.

January 15, 2025

 6 Kneip, A. and Liebl, D., 2020. On the optimal reconstruction of partially observed functional data. The Annals of Statistics, 48(3), pp.1692-1717.

January 15, 2025

 6 Kneip, A. and Liebl, D., 2020. On the optimal reconstruction of partially observed functional data. The Annals of Statistics, 48(3), pp.1692-1717.

January 15, 2025

 6 Kneip, A. and Liebl, D., 2020. On the optimal reconstruction of partially observed functional data. The Annals of Statistics, 48(3), pp.1692-1717.

January 15, 2025

 6 Kneip, A. and Liebl, D., 2020. On the optimal reconstruction of partially observed functional data. The Annals of Statistics, 48(3), pp.1692-1717.

January 15, 2025

January 15, 2025

Uniqueness of Completion

We define the Schur complement of a kernel K_I on I with respect to $J \subset I$ as the kernel K_I/K_J

$$= K_I(s,t) - \langle K_I(s,\cdot), K_I(\cdot,t) \rangle_{\mathcal{H}_J}$$

for $s, t \in I \setminus J$.

イロト イボト イヨト イヨト 二日

Uniqueness of Completion

The partial covariance K_{Ω} admits a unique completion iff

$$K_{I_p}/K_{I_p \cap I_{p+1}} = 0$$
, for $1 \le p < r$
 $K_{I_{q+1}}/K_{I_q \cap I_{q+1}} = 0$, for $r \le q < m$.

January 15, 2025

3

14/33

Consequently, for some I_r

$$X_t \in \operatorname{Span}\{X_u : u \in I_r\}$$

for every $t \in I$.

The Graph Ω

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ シ へ ● January 15, 2025 15 / 33

The Graph Ω

• The region Ω can be thought of as a graph with the vertices $s \in I$ and edges $(s, t) \in \Omega$.

→ ∃→

January 15, 2025

3

The Graph Ω

- The region Ω can be thought of as a graph with the vertices $s \in I$ and edges $(s, t) \in \Omega$.
- It turns out that so long as Wseparates $s, t \in I$ with respect to Ω , we have

$$K_{\star}(s,t) = \langle K_{\star}(s,\cdot), K_{\star}(\cdot,t) \rangle_{\mathcal{H}_{W}}$$

イロト イボト イヨト イヨト

January 15, 2025

3

Conditional Independence

■ If X was a Gaussian process, then by *Loève isometry* this implies

$$\mathbb{E}\left[X_s X_t\right] = \mathbb{E}\left[\mathbb{E}\left[X_s | X_W\right] \mathbb{E}\left[X_t | X_W\right]\right]$$

4 **D b** 4 **A b**

A 3 >

- 2 - 5 January 15, 2025 3

Conditional Independence

• If X was a Gaussian process, then by *Loève isometry* this implies

 $\mathbb{E}\left[X_s X_t\right] = \mathbb{E}\left[\mathbb{E}\left[X_s | X_W\right] \mathbb{E}\left[X_t | X_W\right]\right]$

And moreover,

$$\operatorname{Cov}(X_s, X_t | X_W) = 0$$

イロト イボト イヨト イヨト

January 15, 2025

3

Conditional Independence

• If X was a Gaussian process, then by *Loève isometry* this implies

 $\mathbb{E}\left[X_s X_t\right] = \mathbb{E}\left[\mathbb{E}\left[X_s | X_W\right] \mathbb{E}\left[X_t | X_W\right]\right]$

And moreover,

$$\operatorname{Cov}(X_s, X_t | X_W) = 0$$

In other words,

$$X_s \perp\!\!\!\perp X_t \mid \{X_u : u \in W\}.$$

イロト イボト イヨト イヨト

January 15, 2025

3

Assume that U is an interval.

メロト メタト メヨト メヨト

January 15, 2025

2

Assume that U is an interval.

The region Ω can be interpreted as an "adjacency matrix". Two vertices $u, v \in U$ are adjacent if and only if $(u, v) \in \Omega$.

January 15, 2025

Visualizing paths is tricky.

Visualizing paths is tricky. Consider for example the path

 v, x_1, x_2, x_3, u .

The unfilled circles \circ represent the edges (v, x_1) , (x_1, x_2) , (x_2, x_3) and (x_3, u) . For a valid path they must lie within Ω .

On the other hand * represents the non-edge (u, v).

A D N A B N A B N

January 15, 2025

Separators are sets which intercept paths.

Here our path (v, x_1, x_2, x_3, u) passes through W because some of the points in the path lie in W. In fact, notice that this is true for all the paths from v to u in Ω .

Thus, W separates u and v in Ω .

A ID 10 A ID 10 A ID 10

January 15, 2025

Continuously Indexed Graphical Model

We say that X has the graph $\Omega \subset U \times U$ if for every $u, v \in U$ separated by $W \subset U$ in Ω , it satisfies the global Markov property:

$$X_u \perp \!\!\!\perp X_v \mid X_W.$$

January 15, 2025

Continuously Indexed Graphical Model

We say that X has the graph $\Omega \subset U \times U$ if for every $u, v \in U$ separated by $W \subset U$ in Ω , it satisfies the *separation equation*:

$$K(u,v) = \langle K(u,\cdot), K(\cdot,v) \rangle_{\mathcal{H}(K_{\mathbf{W}})}$$

January 15, 2025

Continuously Indexed Graphical Model

We say that X has the graph $\Omega \subset U \times U$ if for every $u, v \in U$ separated by $W \subset U$ in Ω , it satisfies the *separation equation*:

 $K(u,v) = \langle K(u,\cdot), K(\cdot,v) \rangle_{\mathcal{H}(K_{\mathbf{W}})}$

A reproducing kernel characterization of conditional independence in a Gaussian process!

January 15, 2025

Covariance Recovery

Covariance Recovery

• Assume that X admits a graphical structure with the graph $\tilde{\Omega}$, and we can estimate the covariance over $\bar{\Omega}$.

イロト イポト イヨト イヨト

January 15, 2025

Covariance Recovery

- Assume that X admits a graphical structure with the graph $\tilde{\Omega}$, and we can estimate the covariance over $\bar{\Omega}$.
- If $\tilde{\Omega} \subset \Omega \subset \bar{\Omega}$ then it is possible to recover the covariance K of X from $K_{\bar{\Omega}}$.

Image: A match a ma

January 15, 2025

More on Positive-Definite Completion

- 1. Using the canonical completion K_{\star} , one can characterize all completions of K_{Ω} .
- 2. One can derive more elegant expressions for K_{\star} :

$$K_{\star}(x,y) = -\frac{1}{2} [K_{\Omega}(x,x) + K_{\Omega}(y,y] + \sup_{f} \left[f(x) + f(y) - \frac{1}{2} \|f\|_{*}^{2} \right]$$

where

$$||f||_*^2 = ||f_{I_1}||^2 - ||f_{I_1 \cap I_2}||^2 + ||f_{I_2}||^2 - \dots + ||f_{I_p}||^2$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの January 15, 2025

22/33

3. The concept of conditional independence supplies the correct definition of a special solution of positive-definite completion!

Recovering Graph from Covariance

Recovering Uncountably Large Graphs

We say that X has the graph $\Omega \subset U \times U$ if for every $u, v \in U$ separated by $W \subset U$ in Ω , it satisfies the *separation equation*:

$$K(u,v) = \langle K(u,\cdot), K(\cdot,v) \rangle_{\mathcal{H}(K_{\mathbf{W}})}$$

January 15, 2025

24/33

This is not a very handy characterization unlike he multivariate case.

Resolving Uncountably Large Graphs

Let's partition the domain U into $\pi = \{U_1, \ldots, U_p\}.$

Instead of asking whether there is an edge between $u, v \in U$, we pose the related question of whether there is an edge between (some point in) U_i and (some point in) U_j .

January 15, 2025

Resolving Uncountably Large Graphs

Turns out Ω^{π} admits a nice inverse zero characterization!

For $1 \leq i, j \leq p$, let $\mathbf{K}_{ij} : L^2(U_j, \mu) \to L^2(U_i, \mu)$ be the integral operator induced by the integral kernel $K_{ij} = K|_{U_i \times U_i}$ given by

$$\mathbf{K}_{ij}f(u) = \int_{U_j} K_{ij}(u, v) f(v) \ d\mu(v)$$

Define the *covariance operator matrix* \mathbf{K}_{π} induced by the partition π as $\mathbf{K}_{\pi} = [\mathbf{K}_{ij}]_{i,j=1}^{p}$. Furthermore, we define the correlation operator matrix \mathbf{R}_{π} induced by the partition π as $\mathbf{R}_{\pi} = [\mathbf{R}_{ij}]_{i,j=1}^{p}$ specified entrywise by

$$\mathbf{R}_{ij} = \mathbf{K}_{ii}^{-1/2} \mathbf{K}_{ij} \mathbf{K}_{jj}^{-1/2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで January 15, 2025

Resolving Uncountably Large Graphs

The correlation operator matrix \mathbf{R}_{π} behaves much better than \mathbf{K}_{π} . In fact, it is often invertible!

Theorem

Under some technical conditions, if \mathbf{R}_{π} is invertible, then the graph Ω^{π} is related to the inverse $\mathbf{P}_{\pi} = \mathbf{R}_{\pi}^{-1}$ as follows:

$$\Omega^{\pi} \equiv \lim_{\epsilon \to 0} (\Omega + \mathbb{B}_{\epsilon})^{\pi} = \bigcup \{ U_i \times U_j : \|\mathbf{P}_{ij}\| \neq 0 \}.$$

The \subset statement holds even without the said technical condition.

Choosing a finer partition π yields a higher resolution version Ω^{π} of Ω .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの January 15, 2025

Graphs of some processes

January 15, 2025

Figure: The covariance K, precision matrix \mathbf{P}_{π} and the graph Ω^{π} of Gaussian kernel: $K(u, v) = \exp[-(u - v)^2]$.

Graphs of some processes

January 15, 2025

Figure: The covariance K, precision matrix \mathbf{P}_{π} and the graph Ω^{π} of Brownian motion: $K(u, v) = \min(u, v)$.

Graphs of some processes

Figure: The covariance K, precision matrix \mathbf{P}_{π} and the graph Ω^{π} of integrated Brownian motion: $K(u, v) = \operatorname{Cov}(X_u, X_v)$ where X_t is given by $X_t = \int_{\max(0, t-1/2)}^t B_u \, du$.

January 15, 2025

Publications

- **1.** The Completion of Covariance Kernels. Kartik G. Waghmare and Victor M. Panaretos. The Annals of Statistics, 50.6 (2022), pp. 3281–33.
- 2. Continuously Indexed Graphical Models. Kartik G. Waghmare and Victor M. Panaretos. Journal of the Royal Statistical Society: Series B (2024).
- 3. The Positive-Definite Completion Problem. Kartik G. Waghmare and Victor M. Panaretos. Transactions of the American Mathematical Society (2024).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの January 15, 2025

References I

- Calderón, A. and R Pepinsky (1952). On the phases of Fourier coefficients for positive real periodic functions. The X-Ray Crystal Analysis Laboratory, Department of Physics, The Pennsylvania State College, pp. 339–348.
- Carathéodory, C. (1907). "Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen". In: *Math. Ann.* 64, pp. 95–115.
- Delaigle, A. and P. Hall (2016). "Approximating fragmented functional data by segments of Markov chains". In: *Biometrika* 103.4, pp. 779–799.
- Delaigle, A. et al. (2021). "Estimating the Covariance of Fragmented and Other Related Types of Functional Data". In: *Journal of the American Statistical Association* 116.535, pp. 1383–1401.

References II

- Descary, M.H. and V.M. Panaretos (2019). "Functional data analysis by matrix completion". In: *The Annals of Statistics* 47.1, pp. 1–38.
- Dym, H. and I. Gohberg (1981). "Extensions of band matrices with band inverses". In: *Linear algebra and its applications* 36, pp. 1–24.
- Grone, R. et al. (1984). "Positive definite completions of partial Hermitian matrices". In: *Linear algebra and its applications* 58, pp. 109–124.
- Krein, M. G. (1940). "Sur le probleme du prolongement des fonctions hermitiennes positives et continues". In: CR (Doklady) Acad. Sci. URSS (NS) 26.1, pp. 17–22.
- Lin, Z., J.L. Wang, and Q. Zhong (2021). "Basis expansions for functional snippets". In: *Biometrika* 108.3, pp. 709–726.
 Rudin, W. (1963). "The extension problem for positive-definite functions". In: *Illinois J. Math.* 7, pp. 532–539.