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Motivation

Spine Bone Mineral Density: A Longitudinal Study5

Figure. The BMD measurements
of ∼100 individuals taken between
the ages of 9 and 21 years.

No individual was followed for
longer than 5 years.

5
Bachrach, L.K., Hastie, T., Wang, M.C., Narasimhan, B. and Marcus, R., 1999. Bone mineral

acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. The Journal of
Clinical Endocrinology & Metabolism, 84(12), pp.4702-4712.
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Motivation

Covariance Estimation

Figure. The pairs (s, t) s.t. BMD
measurements of an individual for
the both ages s and t are available.

The covariance can be estimated
only over a relatively small region
around the diagonal.

January 15, 2025 4 / 33



Motivation

Covariance Estimation

Figure. The pairs (s, t) s.t. BMD
measurements of an individual for
the both ages s and t are available.

The covariance can be estimated
only over a relatively small region
around the diagonal.

January 15, 2025 4 / 33



Problem Statement

Covariance Recovery

Ω

I

I

Let X = {Xt : t ∈ I} be a 2nd-order
stochastic process on an interval I ⊂ R
with mean zero and covariance K.

Given a consistent estimator K̂Ω of the
partial covariance KΩ = K|Ω is it possible
to construct a consistent estimator of K?

1. Under what conditions?

2. How? And how accurate?
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Problem Statement

Covariance Completion

Ω

I

I

Under what conditions is it possible to
extend a kernel KΩ : Ω → R to a
covariance kernel K on I?

1. Is there a unique completion? If not,
how many completions can there be?

2. Is there a special completion which has a
nice interpretation in terms of the
process X?
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2 Unique Completion: Delaigle, Hall, Huang, and Kneip (2021);
Lin, Wang, and Zhong (2021), Descary and Panaretos (2019).

Positive-Definite Completion

1 Stationary on Z: Carathéodory (1907); Calderón and Pepinsky
(1952).

2 Stationary on R: Krein (1940); Rudin (1963).

3 Nonstationary on finite set: Dym and Gohberg (1981); Grone,
Johnson, Sá, and Wolkowicz (1984).

4 Nonstationary on R: ?
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Solution

Completion Formula

KI1

KI2

I1

I1

I2

I2

Let KΩ be a kernel such that

KI1 = KΩ|I1×I1

KI2 = KΩ|I2×I2

are reproducing kernels.

How to define K(s, t) such that K
is a reproducing kernel?
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Solution

Completion Formula

KI1

KI2

(s, t)

KI1∩I2

Consider the subkernel KI1∩I2 . It
has an RKHS

H = H(KI1∩I2)

And consider the cross-covariances

KΩ(t, ·) : u 7→ KΩ(t, u)

KΩ(·, s) : u 7→ KΩ(u, s)

for u ∈ I1 ∩ I2.

Define

K(s, t) = ⟨KΩ(s, ·),KΩ(·, t)⟩HI1∩I2
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Solution

Completion Formula

KI1

KI2

(s, t)

KI1∩I2

KΩ(·, t)

KΩ(s, ·)

If we define K⋆ : I × I → R as

K⋆(s, t) =

{
KΩ(s, t) (s, t) ∈ Ω

⟨KΩ(s, ·),KΩ(·, t)⟩H otherwise.

the result is a valid covariance on I.
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Solution

Completion Algorithm

KI1

KI2

KIm

The procedure can be iterated in many ways, but regardless of the
manner of completion one recovers the same completion.
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Solution

Completion Algorithm

KI1

KI2

KIm

KI1∪I2∪I3

The procedure can be iterated in many ways, but regardless of the
manner of completion one recovers the same completion.
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Estimation

Construction of K⋆

Jp Dp

Sp

K1

Kp

Kp+1

Km

Rp

The formula (∗) reduces to

Rp =
[
Jp

−1/2S∗
p

]∗ [
Jp

−1/2Dp

]
Using the eigendecomposition

Jp =

∞∑
k=1

λp,kep,k ⊗ ep,k

we have

Rp =
∞∑
k=1

1

λp,k
Spep,k ⊗D∗

pep,k
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Estimation

Construction of K̂⋆

K̂1

Ĵp D̂p

Ŝp
K̂p

K̂p+1

K̂m

R̂p

Using the eigendecomposition

Ĵp =

∞∑
k=1

λ̂p,kêp,k ⊗ êp,k

we have

R̂p =

N(p)∑
k=1

1

λ̂p,k

Ŝpêp,k ⊗ D̂∗
pêp,k
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Illustration
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Canonical Completion

Naturalness of Completion

K1

Kp

Kp+1

Km

If we have

KΩ(s, t) = min(s, t) for (s, t) ∈ Ω,

then the completion algorithm gives us

K∗(s, t) = min(s, t) for s, t ∈ I.
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Canonical Completion

Naturalness of Completion

K1

Kp

Kp+1

Km

In fact, the same applies for

Analytic covariances:

K(s, t) = e−(s−t)2 , cos(s− t), ...

Covariances of Markov Gaussian process:

K(s, t) = min(s, t), e−|s−t|, ...

Nice finite rank covariances:

K(s, t) = st+ s2t2, ...
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Connection to Linear Prediction6

KI1

KI2

KI3

KI4

KI5

I1

6
Kneip, A. and Liebl, D., 2020. On the optimal reconstruction of partially observed functional data.

The Annals of Statistics, 48(3), pp.1692-1717.
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Connection to Linear Prediction6

KI1

KI2

KI3

KI4

KI5

I2

6
Kneip, A. and Liebl, D., 2020. On the optimal reconstruction of partially observed functional data.
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Connection to Linear Prediction6

KI1

KI2

KI3

KI4

KI5

I1 ∩ I2

6
Kneip, A. and Liebl, D., 2020. On the optimal reconstruction of partially observed functional data.

The Annals of Statistics, 48(3), pp.1692-1717.
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Connection to Linear Prediction6

KI1
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KI3

KI4

KI5

I3

6
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KI4

KI5
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Uniqueness of Completion

KI1

KIp

KIq+1

KIr
KIq∩Iq+1

KIp∩Ip+1

KIm

We define the Schur complement
of a kernel KI on I with respect
to J ⊂ I as the kernel KI/KJ

= KI(s, t)−⟨KI(s, ·),KI(·, t)⟩HJ

for s, t ∈ I \ J .
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Uniqueness of Completion

KI1

KIp

KIq+1

KIr
KIq∩Iq+1

KIp∩Ip+1

KIm The partial covariance KΩ

admits a unique completion iff

KIp/KIp∩Ip+1 = 0, for 1 ≤ p < r

KIq+1/KIq∩Iq+1 = 0, for r ≤ q < m.

Consequently, for some Ir

Xt ∈ Span{Xu : u ∈ Ir}

for every t ∈ I.
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The Separation Property

The Graph Ω

K⋆(s, ·)

K⋆(·, t)

K⋆W

(s, t)

KI1

KIm

W

W

The region Ω can be thought of as
a graph with the vertices s ∈ I
and edges (s, t) ∈ Ω.

It turns out that so long as W
separates s, t ∈ I with respect to
Ω, we have

K⋆(s, t) = ⟨K⋆(s, ·),K⋆(·, t)⟩HW
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The Separation Property

Conditional Independence

K⋆(s, ·)

K⋆(·, t)

K⋆W

(s, t)

KI1

KIm

W

W

If X was a Gaussian process, then
by Loève isometry this implies

E [XsXt] = E [E [Xs|XW ]E [Xt|XW ]]

And moreover,

Cov(Xs, Xt|XW ) = 0

In other words,

Xs ⊥⊥ Xt | {Xu : u ∈ W}.
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Visualizing Uncountably Infinite Graphs

(u, v)
+
u

+u

+v

+
v

U

U

Ω

Assume that U is an interval.

The region Ω can be interpreted
as an “adjacency matrix”. Two
vertices u, v ∈ U are adjacent if
and only if (u, v) ∈ Ω.
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Visualizing Uncountably Infinite Graphs

∗
(u, v)
+
u

+u

+v

+
v

+
x1

+
x2

+
x3

+x1
+x2

+x3

Visualizing paths is tricky.

January 15, 2025 17 / 33



Visualizing Uncountably Infinite Graphs

∗
(u, v)
+
u

+u

+v

+
v

+
x1

+
x2

+
x3

+x1
+x2

+x3

Visualizing paths is tricky.
Consider for example the path

v, x1, x2, x3, u.

The unfilled circles ◦ represent
the edges (v, x1), (x1, x2), (x2, x3)
and (x3, u). For a valid path they
must lie within Ω.

On the other hand ∗ represents
the non-edge (u, v).
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Visualizing Uncountably Infinite Graphs

∗
(u, v)
+
u

+u

+v

+
v

+ +
W

+

+

W

Separators are sets which
intercept paths.

Here our path (v, x1, x2, x3, u)
passes through W because some
of the points in the path lie in W .
In fact, notice that this is true for
all the paths from v to u in Ω.

Thus, W separates u and v in Ω.
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Continuously Indexed Graphical Model

(u, v)
+
u

+u

+v

+
v

+ +
W

+

+

W

Ω

We say that X has the graph
Ω ⊂ U × U if for every u, v ∈ U
separated by W ⊂ U in Ω, it
satisfies the global Markov
property:

Xu ⊥⊥ Xv | XW .
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Continuously Indexed Graphical Model

KW

K
(u
,·
)

K(·, v)
(u, v)
+
u

+u

+v

+
v

+ +
W

+

+

W

We say that X has the graph
Ω ⊂ U × U if for every u, v ∈ U
separated by W ⊂ U in Ω, it
satisfies the separation equation:

K(u, v) = ⟨K(u, ·),K(·, v)⟩H(KW )

A reproducing kernel
characterization of conditional
independence in a Gaussian
process!
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Covariance Recovery

Ω̄

Assume that X admits a graphical
structure with the graph Ω̃, and
we can estimate the covariance
over Ω̄.

If Ω̃ ⊂ Ω ⊂ Ω̄ then it is possible to
recover the covariance K of X
from KΩ̄.
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More on Positive-Definite Completion

1. Using the canonical completion K⋆, one can characterize all
completions of KΩ.

2. One can derive more elegant expressions for K⋆:

K⋆(x, y) = −1

2
[KΩ(x, x) +KΩ(y, y] + sup

f

[
f(x) + f(y)− 1

2
∥f∥2∗

]
where

∥f∥2∗ = ∥fI1∥2 − ∥fI1∩I2∥2 + ∥fI2∥2 − · · ·+ ∥fIp∥2

3. The concept of conditional independence supplies the correct
definition of a special solution of positive-definite completion!
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Recovering Graph from Covariance
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Recovering Uncountably Large Graphs

KW

K
(u
,·
)

K(·, v)
(u, v)
+
u

+u

+v

+
v

+ +
W

+

+

W

We say that X has the graph
Ω ⊂ U × U if for every u, v ∈ U
separated by W ⊂ U in Ω, it
satisfies the separation equation:

K(u, v) = ⟨K(u, ·),K(·, v)⟩H(KW )

This is not a very handy
characterization unlike he
multivariate case.
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Resolving Uncountably Large Graphs

Let’s partition the domain U into π = {U1, . . . , Up}.

Ω Ωπ

Instead of asking whether there is an edge between u, v ∈ U , we pose
the related question of whether there is an edge between (some point
in) Ui and (some point in) Uj .
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Resolving Uncountably Large Graphs

Turns out Ωπ admits a nice inverse zero characterization!

For 1 ≤ i, j ≤ p, let Kij : L
2(Uj , µ) → L2(Ui, µ) be the integral

operator induced by the integral kernel Kij = K|Ui×Uj given by

Kijf(u) =

∫
Uj

Kij(u, v)f(v) dµ(v)

Define the covariance operator matrix Kπ induced by the partition π as
Kπ = [Kij ]

p
i,j=1. Furthermore, we define the correlation operator matrix

Rπ induced by the partition π as Rπ = [Rij ]
p
i,j=1 specified entrywise by

Rij = K
−1/2
ii KijK

−1/2
jj .
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Resolving Uncountably Large Graphs

The correlation operator matrix Rπ behaves much better than Kπ. In
fact, it is often invertible!

Theorem
Under some technical conditions, if Rπ is invertible, then the graph Ωπ

is related to the inverse Pπ = R−1
π as follows:

Ωπ ≡ lim
ϵ→0

(Ω + Bϵ)
π = ∪ {Ui × Uj : ∥Pij∥ ≠ 0}.

The ⊂ statement holds even without the said technical condition.

Choosing a finer partition π yields a higher resolution version Ωπ of Ω.
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Graphs of some processes
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Figure: The covariance K, precision matrix Pπ and the graph Ωπ of
Gaussian kernel: K(u, v) = exp[−(u− v)2].
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Graphs of some processes
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Figure: The covariance K, precision matrix Pπ and the graph Ωπ of
Brownian motion: K(u, v) = min(u, v).
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Graphs of some processes
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Figure: The covariance K, precision matrix Pπ and the graph Ωπ of
integrated Brownian motion: K(u, v) = Cov(Xu, Xv) where Xt is given by

Xt =
∫ t

max(0,t−1/2)
Bu du.

January 15, 2025 30 / 33



Publications

1. The Completion of Covariance Kernels.
Kartik G. Waghmare and Victor M. Panaretos.
The Annals of Statistics, 50.6 (2022), pp. 3281–33.

2. Continuously Indexed Graphical Models.
Kartik G. Waghmare and Victor M. Panaretos.
Journal of the Royal Statistical Society: Series B (2024).

3. The Positive-Definite Completion Problem.
Kartik G. Waghmare and Victor M. Panaretos.
Transactions of the American Mathematical Society (2024).

January 15, 2025 31 / 33



References I

Calderón, A. and R Pepinsky (1952). On the phases of Fourier
coefficients for positive real periodic functions. The X-Ray Crystal
Analysis Laboratory, Department of Physics, The Pennsylvania
State College, pp. 339–348.
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