

Statistical Efficiency in Local Differential Privacy

Lukas Steinberger (University of Vienna) joint with Nikita Kalinin, ISTA

Institute for Statistics and Mathematics, WU January 8, 2025

research supported by Austrian Science Fund (FWF): I 5484-N

- 1. [Differential Privacy](#page-2-0)
- 2. [Local DP](#page-12-0)
- 3. [Efficiency I](#page-16-0)
- 4. [Maximizing Fisher-Information](#page-20-0)
- 5. [Efficiency II](#page-40-0)
- 6. [Summary](#page-44-0)

ISSUES OF DATA PRIVACY PROTECTION

This is an old problem with increasing relevance in the modern era of big data. For instance:

- \triangleright official statistics: statistical disclosure control
- ▶ large scale medical research
- ▶ smart phone user data
- \blacktriangleright social media data
- ▶ social or psychological surveys: *evasive answer bias*
- \triangleright IoT
- \blacktriangleright etc.

EXAMPLE: DATA FROM SMART METER

(from [Giaconi et al., 2018\)](#page-45-1)

DEFINITION OF DIFFERENTIAL PRIVACY

[Dwork et al. \(2006\)](#page-45-2) proposed the following.

Distribution of *Z* should not depend too much on any individual contribution *xⁱ* .

DIFFERENTIAL PRIVACY

[Dwork et al. \(2006\)](#page-45-2) proposed the following.

▶ For a given original data set *X* = $(X_1, ..., X_n)$ in \mathcal{X}^n , randomly generate sanitized data Z in Z , with conditional distribution

$$
Q(A|x) = P(Z \in A|X = x).
$$

- ▶ The conditional distribution (Markov kernel) $Q \in \mathcal{M}(\mathcal{X}^n \to \mathcal{Z})$ is called a *privacy mechanism* or a *channel*.
- \blacktriangleright The distribution of the sanitized data *Z* is given by

$$
QP:=\int_{\mathcal{X}^n}Q(\cdot|x)\,dP(x).
$$

DIFFERENTIAL PRIVACY

For $x, x' \in \mathcal{X}^n$, consider the Hamming distance

$$
d_0(x, x') = \#\{i : x_i \neq x'_i\}.
$$

Definition [\(Dwork et al., 2006\)](#page-45-2)

Fix a privacy parameter $\varepsilon \in (0,\infty)$. The Markov kernel $Q \in \mathcal{M}(\mathcal{X}^n \to \mathcal{Z})$ is called ε **-differentially private** if for all $x, x' \in \mathcal{X}^n$ with $d_0(x, x') \leq 1$, we have

$$
Q(A|x) \le e^{\varepsilon} Q(A|x'), \quad \forall A \in \mathcal{G},
$$

ε-DIFFERENTIAL PRIVACY

$$
\forall A, \forall x, x' : d_0(x, x') \le 1 :
$$

$$
e^{-\varepsilon} \le \frac{Q(A|x)}{Q(A|x')} \le e^{\varepsilon}
$$

- \blacktriangleright **Idea:** The conditional distribution of *Z* given $X = x$ does not depend too much on the data of the *i*-th individual in the database, thereby protecting its privacy.
-

ε-DIFFERENTIAL PRIVACY

$$
\forall A, \forall x, x' : d_0(x, x') \le 1 :
$$

$$
e^{-\varepsilon} \le \frac{Q(A|x)}{Q(A|x')} \le e^{\varepsilon}
$$

- \blacktriangleright **Idea:** The conditional distribution of *Z* given $X = x$ does not depend too much on the data of the *i*-th individual in the database, thereby protecting its privacy.
- **►** The smaller $\varepsilon \in (0, \infty)$, the stronger is the privacy protection.

EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

[Differential Privacy](#page-2-0) [Local DP](#page-12-0) [Efficiency I](#page-16-0) [Maximizing Fisher-Information](#page-20-0) [Efficiency II](#page-40-0) [Summary](#page-44-0) [References](#page-45-0)

- \blacktriangleright Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M].$
- \blacktriangleright We want to release an estimate of $\theta := \mathbb{E}[X_1]$ while respecting *ε*-DP.
- \blacktriangleright Publish $Z = \bar{X}_n + Lap(n\varepsilon/(2M))$, where

$$
f_{Lap(\gamma)}(z) = \frac{\gamma}{2} \exp(-\gamma |z|).
$$

EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

[Differential Privacy](#page-2-0) [Local DP](#page-12-0) [Efficiency I](#page-16-0) [Maximizing Fisher-Information](#page-20-0) [Efficiency II](#page-40-0) [Summary](#page-44-0) [References](#page-45-0)

- \blacktriangleright Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M].$
- \blacktriangleright We want to release an estimate of $\theta := \mathbb{E}[X_1]$ while respecting *ε*-DP.
- \blacktriangleright Publish $Z = \bar{X}_n + Lap(n\varepsilon/(2M))$, where

$$
f_{Lap(\gamma)}(z) = \frac{\gamma}{2} \exp(-\gamma |z|).
$$

$$
\frac{q(z|x)}{q(z|x')} = \exp\left(-\frac{n\varepsilon}{2M} \left[|z - \bar{x}_n| - |z - \bar{x}'_n| \right] \right)
$$

$$
\leq \exp\left(\frac{n\varepsilon}{2M} |\bar{x}_n - \bar{x}'_n| \right)
$$

$$
= \exp\left(\frac{n\varepsilon}{2M} \left| \frac{x_{i_0} - x'_{i_0}}{n} \right| \right) \leq e^{\varepsilon}.
$$

EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

[Differential Privacy](#page-2-0) [Local DP](#page-12-0) [Efficiency I](#page-16-0) [Maximizing Fisher-Information](#page-20-0) [Efficiency II](#page-40-0) [Summary](#page-44-0) [References](#page-45-0)

- \blacktriangleright Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M].$
- \blacktriangleright We want to release an estimate of $\theta := \mathbb{E}[X_1]$ while respecting *ε*-DP.
- \blacktriangleright Publish $Z = \bar{X}_n + Lap(n\varepsilon/(2M))$, where

$$
f_{Lap(\gamma)}(z) = \frac{\gamma}{2} \exp(-\gamma |z|).
$$

 \blacktriangleright This requires a trusted third party who collects X_1, \ldots, X_n , computes \bar{X}_n and adds the Laplace noise. ⇒ *local* differential privacy

LOCAL DIFFERENTIAL PRIVACY

We say that an ε -DP channel $Q \in \mathcal{M}(\mathcal{X}^n \to \mathcal{Z}^n)$ provides local **privacy**, if individual *i* can generate its sanitized data *Zⁱ* on its 'local machine', without ever giving away its original data *Xⁱ* .

▶ No trusted third party needed

LOCAL PRIVACY - NON-INTERACTIVE CASE

Definition

We say that a channel $Q \in \mathcal{M}(\mathcal{X}^n \to \mathcal{Z}^n)$ is **non-interactive (NI)**, if there exist channels $Q_i \in \mathcal{M}(\mathcal{X} \to \mathcal{Z})$, such that

$$
Q(dz|x) = \bigotimes_{i=1}^{n} Q_i(dz_i|x_i).
$$

 Q is ε -DP $\iff Q_i(A_i|x_i) \leq e^{\varepsilon} Q_i(A_i|x'_i), \forall i, A_i, x_i, x'_i$

[Differential Privacy](#page-2-0) [Local DP](#page-12-0) [Efficiency I](#page-16-0) [Maximizing Fisher-Information](#page-20-0) [Efficiency II](#page-40-0) [Summary](#page-44-0) [References](#page-45-0) EXAMPLE: CENTRAL VS. LOCAL MEAN ESTIMATION

- ► Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M]$.
- \blacktriangleright Estimate $\theta := \mathbb{E}[X_1]$ while respecting ε -DP.

 $\text{With a central data cutator: } \hat{\theta}_n = \bar{X}_n + Lap(n \varepsilon/(2M))$

$$
\triangleright \mathbb{E}[\hat{\theta}_n] = \theta
$$

\n
$$
\triangleright \text{Var}[\hat{\theta}_n] = \frac{\text{Var}[X_1]}{n} + \frac{8M^2}{n^2 \varepsilon^2}
$$

With local privacy: $Z_i = X_i + Lap(\varepsilon/(2M))$, $\hat{\theta}_n = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n Z_i$

$$
\triangleright \mathbb{E}[\hat{\theta}_n] = \theta
$$

\n
$$
\triangleright \text{Var}[\hat{\theta}_n] = \frac{\text{Var}[X_1]}{n} + \frac{8M^2}{n\epsilon^2}
$$

Additional noise is non-negligible for $n \to \infty$.

EXAMPLE: LOCALLY PRIVATE MEAN ESTIMATION

[Differential Privacy](#page-2-0) [Local DP](#page-12-0) [Efficiency I](#page-16-0) [Maximizing Fisher-Information](#page-20-0) [Efficiency II](#page-40-0) [Summary](#page-44-0) [References](#page-45-0)

- ► Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M]$.
- \blacktriangleright Estimate $\theta := \mathbb{E}[X_1]$ while respecting ε -DP.

With local privacy: $\hat{\theta}_n = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n Z_i$

\n- ▶
$$
Z_i = X_i + Lap(\varepsilon/(2M))
$$
\n- ▶ $\mathbb{E}[\hat{\theta}_n] = \theta$
\n- ▶ $\text{Var}[\hat{\theta}_n] = \frac{Var[X_1]}{n} + \frac{8M^2}{n\varepsilon^2} = \frac{1}{n} \left(\sigma^2 + \frac{8M^2}{\varepsilon^2} \right)$
\n- ▶ $Z_i = \pm z_0$, w.p. $\frac{1}{2} \left(1 \pm \frac{X_i}{z_0} \right)$, where $z_0 := M \frac{e^{\varepsilon} + 1}{e^{\varepsilon} - 1}$.
\n- ▶ $\mathbb{E}[\hat{\theta}_n] = \mathbb{E}[\mathbb{E}[Z_1 | X_1]] = \mathbb{E}[X_1] = \theta$
\n- ▶ $\text{Var}[\hat{\theta}_n] = \frac{1}{n} \left(z_0^2 - \theta^2 \right)$
\n

Most of the literature deals with minimax rates of convergence. Can't distinguish mechanisms!

ASYMPTOTIC EFFICIENCY

▶ **classical parametric estimation problem:** [\(Hájek, 1970;](#page-45-3) [Le Cam, 1960\)](#page-45-4)

Given data $X_1, \ldots, X_n \stackrel{iid}{\thicksim} P_\theta, \, \theta \, \in \, \Theta \, \subseteq \, \mathbb{R}^p$, and a regular estimator $\hat{\theta}_n : \mathcal{X}^n \to \Theta$ of θ with

$$
\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{P_{\theta}^n}{\leadsto} D_{\theta},
$$

then $Cov(D_\theta) \geq I_\theta^{-1}$ and the MLE achieves this minimal asymptotic covariance matrix.

ASYMPTOTIC EFFICIENCY

Differentiability in Quadratic Mean (DQM)

The model $(P_{\theta})_{\theta \in \Theta}$ with $\Theta \subseteq \mathbb{R}^p$ is called *differentiable in quadratic mean* at the point $\theta \in \Theta$, if θ is an interior point of Θ and there exists a (*σ*-finite) dominating measure *µ* such that the corresponding μ -densities $p_{\theta} = \frac{dP_{\theta}}{d\mu}$ satisfy

$$
\int_{\mathcal{X}} \left(\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} - \frac{1}{2} h^T s_{\theta}(x) \sqrt{p_{\theta}(x)} \right)^2 d\mu(x) = o(||h||^2)
$$

as $h \to 0$, for some measurable vector valued function $s_{\theta}: \mathcal{X} \to \mathbb{R}^p$. The function s_{θ} is called the *score function* at θ .

 $Define \dot{p}_{\theta} := s_{\theta} p_{\theta}.$

ASYMPTOTIC EFFICIENCY

Regular Estimator

An estimator $\hat{\theta}_n: \mathcal{X}^n \to \Theta$ in a DQM model is called regular at $\theta \in \Theta$ if

$$
\sqrt{n}\left(\hat{\theta}_n - \left(\theta + h/\sqrt{n}\right)\right) \stackrel{P_{\theta+h/\sqrt{n}}^n}{\rightsquigarrow} D_\theta, \quad \forall h \in \mathbb{R}^p,
$$

where the limiting distribution *D^θ* does not depend on *h*.

ASYMPTOTIC EFFICIENCY WITH LDP

▶ **private estimation problem:**

Given sanitized data $Z_1,\ldots,Z_n \stackrel{iid}{\thicksim} Q_0P_\theta$, $\theta\in\Theta\subseteq\mathbb{R}^p$ and a $\mathop{\mathrm {regular}}\nolimits$ estimator $\hat \theta_n : \mathcal Z^n \to \Theta$ of θ with

$$
\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{[Q_0 P_\theta]^n}{\leadsto} D_\theta,
$$

then $Cov(D_\theta) \geq I_\theta(Q_0)^{-1}$ and the MLE achieves this asymptotic covariance matrix.

Differential Privacy Local DP
\n
$$
\begin{array}{cc}\n\text{Local DP} & \text{Efficiency I} & \text{Maximizing Fisher-Information} & \text{Efficiency II} & \text{Summary} \\
\hline\n\text{0000000} & 0000 & 0000 & 0000 \\
\hline\n\end{array}
$$
\n
$$
\text{sup} \quad I_{\theta}(Q) \quad (\leq I_{\theta}) \qquad \Theta \subseteq \mathbb{R}
$$
\n
$$
Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})
$$

$$
\mathcal{Q}_{\varepsilon}(\mathcal{X}) = \bigcup_{(\mathcal{Z},\mathcal{G})} \left\{ Q \in \mathcal{M}(\mathcal{X} \to \mathcal{Z}) \middle| Q(A|x) \leq e^{\varepsilon} Q(A|x'), \ \forall A, x, x' \right\}
$$

- \blacktriangleright infinite dimensional domain $Q_{\epsilon}(\mathcal{X})$
- ▶ maximizing a convex function on a convex set (local optima!)
- ▶ maximizer depends on *θ*?!

[Differential Privacy](#page-2-0) [Local DP](#page-12-0) [Efficiency I](#page-16-0) [Maximizing Fisher-Information](#page-20-0) [Efficiency II](#page-40-0) [Summary](#page-44-0) [References](#page-45-0) $\text{IF } |\mathcal{X}| = k \in \mathbb{N}$ sup *Q*∈Q*ε*(X) $I_{\theta}(Q) = \sup$ *Q*∈Q*ε,k Iθ*(*Q*)

$$
\mathcal{Q}_{\varepsilon,k} = \bigcup_{\mathcal{Z}:|\mathcal{Z}|=k} \left\{ Q \in \mathcal{M}(\mathcal{X} \to \mathcal{Z}) \middle| Q(A|x) \leq e^{\varepsilon} Q(A|x') \,\forall A, x, x' \right\}
$$

$$
\triangleq \left\{ Q \in [0,1]^{k \times k} \middle| \sum_{i=1}^{k} Q_{ij} = 1, Q_{ij} \leq e^{\varepsilon} Q_{ij'} \,\forall i, j, j' \right\}
$$

-
-

Differential Privacy	Local DP	Efficiency I	Maximuming Fisher-Information	Efficiency II	Summary	References
\n $IF \left \mathcal{X} \right = k \in \mathbb{N}$ \n	\n $\sup_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q) = \sup_{Q \in \mathcal{Q}_{\varepsilon,k}} I_{\theta}(Q)$ \n	\n $I_{\theta}(Q) = \sup_{Q \in \mathcal{Q}_{\varepsilon,k}} I_{\theta}(Q)$ \n				

$$
\mathcal{Q}_{\varepsilon,k} = \bigcup_{\mathcal{Z}:|\mathcal{Z}|=k} \left\{ Q \in \mathcal{M}(\mathcal{X} \to \mathcal{Z}) \middle| Q(A|x) \leq e^{\varepsilon} Q(A|x') \,\forall A, x, x' \right\}
$$

$$
\triangleq \left\{ Q \in [0,1]^{k \times k} \middle| \sum_{i=1}^{k} Q_{ij} = 1, Q_{ij} \leq e^{\varepsilon} Q_{ij'} \,\forall i, j, j' \right\}
$$

- ▶ Notice that we went from all possible measurable spaces $(\mathcal{Z}, \mathcal{G})$ to $\mathcal{Z} = \{1, \ldots, k\}.$
-

Differential Privacy	Local DP	Efficiency I	Maximizing Fisher-Information	Efficiency II	Summary	References
\n $IF \left \mathcal{X} \right = k \in \mathbb{N}$ \n	\n $\sup_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q) = \sup_{Q \in \mathcal{Q}_{\varepsilon,k}} I_{\theta}(Q)$ \n	\n $I_{\theta}(Q) = \sup_{Q \in \mathcal{Q}_{\varepsilon,k}} I_{\theta}(Q)$ \n				

$$
\mathcal{Q}_{\varepsilon,k} = \bigcup_{\mathcal{Z}:|\mathcal{Z}|=k} \left\{ Q \in \mathcal{M}(\mathcal{X} \to \mathcal{Z}) \middle| Q(A|x) \leq e^{\varepsilon} Q(A|x') \,\forall A, x, x' \right\}
$$

$$
\triangleq \left\{ Q \in [0,1]^{k \times k} \middle| \sum_{i=1}^{k} Q_{ij} = 1, Q_{ij} \leq e^{\varepsilon} Q_{ij'} \,\forall i, j, j' \right\}
$$

- ▶ Notice that we went from all possible measurable spaces $(\mathcal{Z}, \mathcal{G})$ to $\mathcal{Z} = \{1, \ldots, k\}.$
- ▶ [Kairouz et al. \(2016\)](#page-45-5) provide an equivalent LP with time complexity $O(2^k)$.

$$
\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)
$$

$$
\begin{aligned} \text{Bernoulli}(\theta):\\ p_{\theta}(x) = \theta^x (1 - \theta)^{1 - x}, \theta \in (0, 1), x \in \mathcal{X} = \{0, 1\} \\ Q^* = \frac{1}{1 + e^{\varepsilon}} \begin{pmatrix} e^{\varepsilon} & 1\\ 1 & e^{\varepsilon} \end{pmatrix} \end{aligned}
$$

See [Kairouz et al. \(2016\)](#page-45-5)

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

► Binomial(2,
$$
\theta
$$
):
\n $p_{\theta}(x) = {2 \choose x} \theta^x (1 - \theta)^{2-x}, \theta \in (0, 1), x \in \mathcal{X} = \{0, 1, 2\}$

$$
Q^* = ?
$$

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

$$
\begin{aligned}\n\blacktriangleright \text{ Binomial}(2, \theta): \\
p_{\theta}(x) &= \binom{2}{x} \theta^x (1 - \theta)^{2 - x}, \, \theta \in (0, 1), \, x \in \mathcal{X} = \{0, 1, 2\} \\
Q^* &= \frac{1}{2 + e^{\varepsilon}} \begin{pmatrix} e^{\varepsilon} & 1 & 1 \\ 1 & e^{\varepsilon} & 1 \\ 1 & 1 & e^{\varepsilon} \end{pmatrix}\n\end{aligned}
$$

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

► Binomial(2,
$$
\theta
$$
):
\n $p_{\theta}(x) = {2 \choose x} \theta^x (1 - \theta)^{2-x}, \theta \in (0, 1), x \in \mathcal{X} = \{0, 1, 2\}$

$$
Q_{\theta}^* = \begin{cases} \frac{1}{1+e^{\varepsilon}} \begin{pmatrix} e^{\varepsilon} & 1 & 1 \\ 1 & e^{\varepsilon} & e^{\varepsilon} \\ 0 & 0 & 0 \end{pmatrix}, & 0 < \theta \leq \frac{1}{2} - c_{\varepsilon} \end{cases}
$$

$$
Q_{\theta}^* = \begin{cases} \frac{1}{2+e^{\varepsilon}} \begin{pmatrix} e^{\varepsilon} & 1 & 1 \\ 1 & e^{\varepsilon} & 1 \\ 1 & 1 & e^{\varepsilon} \end{pmatrix}, & \frac{1}{2} - c_{\varepsilon} < \theta < \frac{1}{2} + c_{\varepsilon} \end{cases}
$$

$$
\frac{1}{1+e^{\varepsilon}} \begin{pmatrix} e^{\varepsilon} & e^{\varepsilon} & 1 \\ 1 & 1 & e^{\varepsilon} \\ 0 & 0 & 0 \end{pmatrix}, & \frac{1}{2} + c_{\varepsilon} \leq \theta < 1
$$

See [Hucke \(2019\)](#page-45-6)

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

Fortunately we have continuity at *θ* ∈ Θ:

$$
I_{\theta}(Q_{\theta_0}^*) \xrightarrow[\theta_0 \to \theta]{} \max_{Q \in \mathcal{Q}_{\varepsilon}} I_{\theta}(Q).
$$

Thus, we only need to solve

$$
\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\tilde{\theta}_{n_1}}(Q),
$$

for a consistent estimator $\tilde{\theta}_{n_1}.$

In general, for regular parametric models, we have

$$
\sup_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} |I_{\theta}(Q) - I_{\theta'}(Q)| \xrightarrow[\theta \to \theta']} 0.
$$

A TWO-STEP PROCEDURE

But notice that for efficiency of $\hat{\theta}_n$ we need $\frac{n-n_1}{n} \to 1$.

APPROXIMATION BY DISCRETE MODELS

$$
T_{k,\theta}: \mathcal{X} \to \{1,\ldots,k\}, \quad T_{k,\theta}(x) = j \iff x \in B_j(\theta)
$$

$$
Y_i = T_{k,\theta}(X_i), \quad Z_i \sim Q_{\theta}^*(dz|Y_i)
$$

$$
\max_{Q \in \mathcal{Q}_{\varepsilon,k}} I_{\theta}(QT_{k,\theta}) \xrightarrow[k \to \infty]{} \sup_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)
$$

- ► Use with $\theta = \tilde{\theta}_{n_1}$.
- ▶ Need to solve the LP of [Kairouz et al. \(2016\)](#page-45-5) for large *k*.
- ▶ Efficient numerical procedures are needed.

Example: Gaussian Location Model

$P_{\theta} = N(\theta, 1), \ \theta \in \mathbb{R}$

k *k k*

k

Theorem (Kalinin and S. (2024))

In the Gaussian location model with unit variance, if *ε* ≤ 1*.*04 the sign-mechanism Q_{θ}^{sgn} *θ* that generates

> $Z_i =$ $\int \text{sgn}(X_i - \theta)$, with probability $\frac{e^{\epsilon}}{1+\epsilon}$ 1+*e ε* $-\text{sgn}(X_i - \theta)$, with probability $\frac{1}{1 + e^{\epsilon}}$,

satisfies

$$
I_{\theta}(Q) \leq I_{\theta}(Q_{\theta}^{sgn}) = \frac{2}{\pi} \left(\frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1} \right)^2,
$$

for **all** ϵ -DP mechanisms *Q* and all $\theta \in \mathbb{R}$.

cf. [Duchi and Rogers \(2019\)](#page-45-7)

[Differential Privacy](#page-2-0) [Local DP](#page-12-0) [Efficiency I](#page-16-0) [Maximizing Fisher-Information](#page-20-0) [Efficiency II](#page-40-0) [Summary](#page-44-0) [References](#page-45-0) ASYMPTOTIC EFFICIENCY WITH **NON-INTERACTIVE** LDP

Given sanitized data $Z_1,\ldots,Z_n \stackrel{iid}{\thicksim} Q_0P_\theta$, $\theta\in\Theta\subseteq\mathbb{R}^p$ and a $\mathop{\mathrm {regular}}\nolimits$ estimator $\hat \theta_n : \mathcal Z^n \to \Theta$ of θ with

$$
\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{[Q_0 P_\theta]^n}{\leadsto} D_\theta,
$$

then $Cov(D_\theta) \geq I_\theta(Q_0)^{-1}$ and the MLE achieves this asymptotic covariance matrix.

A TWO-STEP PROCEDURE **(INTERACTIVE)**

ASYMPTOTIC EFFICIENCY WITH INTERACTION

Given sanitized data $(Z_1,\ldots,Z_n) \thicksim Q^{(n)}P^n_{\theta}$, $\theta \in \Theta \subseteq \mathbb{R}$ and a regular estimator $\hat{\theta}_n : \mathcal{Z}^n \to \Theta$ of θ with

$$
\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{[Q_0 P_\theta]^n}{\leadsto} D_\theta,
$$

then $\text{Var}_{\theta}(D_{\theta}) \geq [\text{sup}_{Q \in \mathcal{Q}_{\varepsilon}} I_{\theta}(Q)]^{-1}$ and the two-step procedure achieves this asymptotic variance.

ASYMPTOTIC EFFICIENCY WITH INTERACTION

Given sanitized data $(Z_1,\ldots,Z_n) \thicksim Q^{(n)}P^n_{\theta}$, $\theta \in \Theta \subseteq \mathbb{R}$ and a regular estimator $\hat{\theta}_n : \mathcal{Z}^n \to \Theta$ of θ with

$$
\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{[Q_0 P_\theta]^n}{\leadsto} D_\theta,
$$

then $\text{Var}_{\theta}(D_{\theta}) \geq [\text{sup}_{Q \in \mathcal{Q}_{\varepsilon}} I_{\theta}(Q)]^{-1}$ and the two-step procedure achieves this asymptotic variance.

- ▶ We proof LAMN of $(\mathcal{Z}^n, \mathcal{G}^n, (Q^{(n)}P^n_\theta)_{\theta \in \Theta})$, $n \in \mathbb{N}$, along subsequences.
- ▶ We need DQM, and separability of the *σ*-Algebras of (X, \mathcal{F}) and $(\mathcal{Z}, \mathcal{G})$.
- ▶ For efficiency of the two-step MLE we use more classical differentiability conditions on the density $\theta \mapsto p_{\theta}(x)$.

SUMMARY

- ▶ We develop a theory of asymptotic efficiency for (sequentially) interactive local differential privacy.
- \blacktriangleright We provide a numerical procedure that identifies a nearly optimal privacy mechanism *Q*[∗] *^θ* up to arbitrary precision.
- \triangleright We propose a sequentially interactive private estimation procedure that achieves the asymptotically minimal variance.

Open:

- ▶ Numerically efficient algorithms.
- ▶ For *p* > 1, consider $\inf_{Q} \ell(I_{\theta}(Q)^{-1})$ for an $\ell : \mathbb{R}^{p \times p} \to \mathbb{R}$.
- ▶ Nuisance parameters (finite- and infinite-dimensional)

Thank you!

- Duchi, J. and Rogers, R. (2019). Lower bounds for locally private estimation via communication complexity. *PMLR*, 99:1161–1191.
- Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Halevi, S. and Rabin, T., editors, *Theory of Cryptography*, Lecture Notes in Computer Science, pages 265–284. Springer.
- Giaconi, G., Gunduz, D., and Poor, H. V. (2018). Privacy-aware smart metering: Progress and challenges. *IEEE Signal Processing Magazine*, 35(6):59–78.
- Hájek, J. (1970). A characterization of limiting distributions of regular estimates. *Z. Wahrsch. verw. Gebiete*, 14(4):323–330.
- Hucke, U. (2019). Local differential privacy and estimation in the binomial model. Master's thesis, University of Freiburg.
- Kairouz, P., Oh, S., and Viswanath, P. (2016). Extremal mechanisms for local differential privacy. *J. Mach. Learn. Res.*, 17(1):492–542.
- Kalinin, N. and Steinberger, L. (2024). Efficient estimation of a gaussian mean with local differential privacy. *arXiv:2402.04840*.
- Le Cam, L. (1960). Locally asymptotically normal families of distributions. *Univ. California Publ. Statist.*, 3:37–98.

Steinberger, L. (2024). Efficiency in local differential privacy. *Ann. Statist.*, 52(5):2139–2166.

REGULARITY CONDITIONS

- ▶ **Consistent quantizers** $T_{k,\theta}: \mathcal{X} \to \{1,\ldots,k\}$ exist if $\mathcal{P} = (P_{\theta})_{\theta \in \Theta}$ is DQM with jointly measurable $p_{\theta}(x)$ and $s_{\theta}(x)$, $\mathcal{X} \subseteq \mathbb{R}^d$ and the dominating measure μ is finite on compact sets.
- ▶ For **uniform continuity of Fisher-Information** we need DQM of the model with jointly measurable $p_{\theta}(x)$ and $s_{\theta}(x)$ and continuity of $\theta \mapsto s_{\theta} \sqrt{p_{\theta}} : \Theta \to L_2(\mu, \|\cdot\|_2).$