
Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

Statistical Efficiency in
Local Differential Privacy

Lukas Steinberger
(University of Vienna)

joint with Nikita Kalinin, ISTA

Institute for Statistics and Mathematics, WU
January 8, 2025

research supported by Austrian Science Fund (FWF): I 5484-N



Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

1. Differential Privacy

2. Local DP

3. Efficiency I

4. Maximizing Fisher-Information

5. Efficiency II

6. Summary



Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

ISSUES OF DATA PRIVACY PROTECTION

This is an old problem with increasing relevance in the modern
era of big data. For instance:

▶ official statistics: statistical disclosure control
▶ large scale medical research
▶ smart phone user data
▶ social media data
▶ social or psychological surveys: evasive answer bias
▶ IoT
▶ etc.



Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

EXAMPLE: DATA FROM SMART METER

(from Giaconi et al., 2018)
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DEFINITION OF DIFFERENTIAL PRIVACY

Dwork et al. (2006) proposed the following.

individuals database public data

Alice x1−−−−−→

x
randomization−−−−−−−−→

Q
Z

Bob x2−−−−−→
...

Zoey xn−−−−−→

Distribution of Z should not depend too much on any
individual contribution xi.
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DIFFERENTIAL PRIVACY

Dwork et al. (2006) proposed the following.

▶ For a given original data set X = (X1, . . . , Xn) in X n,
randomly generate sanitized data Z in Z , with conditional
distribution

Q(A|x) = P (Z ∈ A|X = x).

▶ The conditional distribution (Markov kernel)
Q ∈ M(X n → Z) is called a privacy mechanism or a
channel.

▶ The distribution of the sanitized data Z is given by

QP :=
∫

X n
Q(·|x) dP (x).
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DIFFERENTIAL PRIVACY

For x, x′ ∈ X n, consider the Hamming distance

d0(x, x′) = #{i : xi , x′
i}.

Definition (Dwork et al., 2006)
Fix a privacy parameter ε ∈ (0, ∞). The Markov kernel
Q ∈ M(X n → Z) is called ε-differentially private if for all
x, x′ ∈ X n with d0(x, x′) ≤ 1, we have

Q(A|x) ≤ eεQ(A|x′), ∀A ∈ G,
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ε-DIFFERENTIAL PRIVACY

∀A, ∀x, x′ : d0(x, x′) ≤ 1 :

e−ε ≤ Q(A|x)
Q(A|x′) ≤ eε

▶ Idea: The conditional distribution of Z given X = x does
not depend too much on the data of the i-th individual in
the database, thereby protecting its privacy.

▶ The smaller ε ∈ (0, ∞), the stronger is the privacy
protection.
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EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

▶ Let X1, . . . , Xn
iid
∼ P ∈ P(X ) with X = [−M, M ].

▶ We want to release an estimate of θ := E[X1] while
respecting ε-DP.

▶ Publish Z = X̄n + Lap(nε/(2M)), where

fLap(γ)(z) = γ

2 exp(−γ|z|).
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EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

▶ Let X1, . . . , Xn
iid
∼ P ∈ P(X ) with X = [−M, M ].

▶ We want to release an estimate of θ := E[X1] while
respecting ε-DP.

▶ Publish Z = X̄n + Lap(nε/(2M)), where

fLap(γ)(z) = γ

2 exp(−γ|z|).

q(z|x)
q(z|x′) = exp

(
− nε

2M

[
|z − x̄n| − |z − x̄′

n|
])

≤ exp
(

nε

2M
|x̄n − x̄′

n|
)

= exp
(

nε

2M

∣∣∣∣∣xi0 − x′
i0

n

∣∣∣∣∣
)

≤ eε.
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EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

▶ Let X1, . . . , Xn
iid
∼ P ∈ P(X ) with X = [−M, M ].

▶ We want to release an estimate of θ := E[X1] while
respecting ε-DP.

▶ Publish Z = X̄n + Lap(nε/(2M)), where

fLap(γ)(z) = γ

2 exp(−γ|z|).

▶ This requires a trusted third party who collects X1, . . . , Xn,
computes X̄n and adds the Laplace noise.
⇒ local differential privacy
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LOCAL DIFFERENTIAL PRIVACY

We say that an ε-DP channel Q ∈ M(X n → Zn) provides local
privacy, if individual i can generate its sanitized data Zi on its
‘local machine’, without ever giving away its original data Xi.

▶ No trusted third party needed
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LOCAL PRIVACY - NON-INTERACTIVE CASE

Definition
We say that a channel Q ∈ M(X n → Zn) is non-interactive
(NI), if there exist channels Qi ∈ M(X → Z), such that

Q(dz|x) =
n⊗

i=1
Qi(dzi|xi).

X1 X2 Xn

Q1

y Q2

y . . . . . . Qn

y
Z1 Z2 Zn

Q is ε-DP ⇐⇒ Qi(Ai|xi) ≤ eεQi(Ai|x′
i), ∀i, Ai, xi, x′

i
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EXAMPLE: CENTRAL VS. LOCAL MEAN ESTIMATION

▶ Let X1, . . . , Xn
iid
∼ P ∈ P(X ) with X = [−M, M ].

▶ Estimate θ := E[X1] while respecting ε-DP.

With a central data curator: θ̂n = X̄n + Lap(nε/(2M))

▶ E[θ̂n] = θ

▶ Var[θ̂n] = V ar[X1]
n + 8M2

n2ε2

With local privacy: Zi = Xi + Lap(ε/(2M)), θ̂n = 1
n

∑n
i=1 Zi

▶ E[θ̂n] = θ

▶ Var[θ̂n] = V ar[X1]
n + 8M2

nε2

Additional noise is non-negligible for n → ∞.
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EXAMPLE: LOCALLY PRIVATE MEAN ESTIMATION

▶ Let X1, . . . , Xn
iid
∼ P ∈ P(X ) with X = [−M, M ].

▶ Estimate θ := E[X1] while respecting ε-DP.

With local privacy: θ̂n = 1
n

∑n
i=1 Zi

▶ Zi = Xi + Lap(ε/(2M))
▶ E[θ̂n] = θ

▶ Var[θ̂n] = V ar[X1]
n + 8M2

nε2 = 1
n

(
σ2 + 8M2

ε2

)
▶ Zi = ±z0, w.p. 1

2

(
1 ± Xi

z0

)
, where z0 := M eε+1

eε−1 .

▶ E[θ̂n] = E[E[Z1|X1]] = E[X1] = θ
▶ Var[θ̂n] = 1

n

(
z2

0 − θ2)
Most of the literature deals with minimax rates of convergence.
Can’t distinguish mechanisms!
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ASYMPTOTIC EFFICIENCY

▶ classical parametric estimation problem: (Hájek, 1970;
Le Cam, 1960)

Given data X1, . . . , Xn
iid
∼ Pθ, θ ∈ Θ ⊆ Rp, and a regular

estimator θ̂n : X n → Θ of θ with

√
n(θ̂n − θ)

P n
θ
⇝ Dθ,

then Cov(Dθ) ≽ I−1
θ and the MLE achieves this minimal

asymptotic covariance matrix.
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ASYMPTOTIC EFFICIENCY

Differentiability in Quadratic Mean (DQM)
The model (Pθ)θ∈Θ with Θ ⊆ Rp is called differentiable in
quadratic mean at the point θ ∈ Θ, if θ is an interior point of Θ
and there exists a (σ-finite) dominating measure µ such that the
corresponding µ-densities pθ = dPθ

dµ satisfy

∫
X

(√
pθ+h(x) −

√
pθ(x) − 1

2hT sθ(x)
√

pθ(x)
)2

dµ(x) = o(∥h∥2)

as h → 0, for some measurable vector valued function
sθ : X → Rp. The function sθ is called the score function at θ.

Define ṗθ := sθpθ.
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ASYMPTOTIC EFFICIENCY

Regular Estimator
An estimator θ̂n : X n → Θ in a DQM model is called regular at
θ ∈ Θ if

√
n
(
θ̂n − (θ + h/

√
n)
) P n

θ+h/
√

n

⇝ Dθ, ∀h ∈ Rp,

where the limiting distribution Dθ does not depend on h.
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ASYMPTOTIC EFFICIENCY WITH LDP

X1 X2 Xn

Q0

y Q0

y . . . . . . Q0

y
Z1 Z2 Zn

▶ private estimation problem:

Given sanitized data Z1, . . . , Zn
iid
∼ Q0Pθ, θ ∈ Θ ⊆ Rp and a

regular estimator θ̂n : Zn → Θ of θ with

√
n(θ̂n − θ)

[Q0Pθ]n
⇝ Dθ,

then Cov(Dθ) ≽ Iθ(Q0)−1 and the MLE achieves this
asymptotic covariance matrix.
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sup
Q∈Qε(X )

Iθ(Q) (≤ Iθ) Θ ⊆ R

Qε(X ) =
⋃

(Z,G)

{
Q ∈ M(X → Z)

∣∣∣Q(A|x) ≤ eεQ(A|x′), ∀A, x, x′
}

▶ infinite dimensional domain Qε(X )
▶ maximizing a convex function on a convex set (local

optima!)
▶ maximizer depends on θ?!
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IF |X | = k ∈ N

sup
Q∈Qε(X )

Iθ(Q) = sup
Q∈Qε,k

Iθ(Q)

Qε,k =
⋃

Z:|Z|=k

{
Q ∈ M(X → Z)

∣∣∣Q(A|x) ≤ eεQ(A|x′) ∀A, x, x′
}

≜
{

Q ∈ [0, 1]k×k
∣∣∣ k∑

i=1
Qij = 1, Qij ≤ eεQij′ ∀i, j, j′

}

▶ Notice that we went from all possible measurable spaces
(Z, G) to Z = {1, . . . , k}.

▶ Kairouz et al. (2016) provide an equivalent LP with time
complexity O(2k).
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IF |X | = k ∈ N
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maxQ∈Qε(X ) Iθ(Q)

▶ Bernoulli(θ):
pθ(x) = θx(1 − θ)1−x, θ ∈ (0, 1), x ∈ X = {0, 1}

Q∗ = 1
1 + eε

(
eε 1
1 eε

)

See Kairouz et al. (2016)
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maxQ∈Qε(X ) Iθ(Q)
▶ Binomial(2, θ):

pθ(x) =
(2

x

)
θx(1 − θ)2−x, θ ∈ (0, 1), x ∈ X = {0, 1, 2}

Q∗ = ?
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maxQ∈Qε(X ) Iθ(Q)
▶ Binomial(2, θ):

pθ(x) =
(2

x

)
θx(1 − θ)2−x, θ ∈ (0, 1), x ∈ X = {0, 1, 2}

Q∗ = 1
2 + eε

eε 1 1
1 eε 1
1 1 eε

 ?
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maxQ∈Qε(X ) Iθ(Q)
▶ Binomial(2, θ):

pθ(x) =
(2

x

)
θx(1 − θ)2−x, θ ∈ (0, 1), x ∈ X = {0, 1, 2}

Q∗
θ =



1
1+eε


eε 1 1
1 eε eε

0 0 0

 , 0 < θ ≤ 1
2 − cε

1
2+eε


eε 1 1
1 eε 1
1 1 eε

 , 1
2 − cε < θ < 1

2 + cε

1
1+eε


eε eε 1
1 1 eε

0 0 0

 , 1
2 + cε ≤ θ < 1

See Hucke (2019)
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maxQ∈Qε(X ) Iθ(Q)

θ θ

Iθ(Q)
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maxQ∈Qε(X ) Iθ(Q)

θ θ

Iθ(Q)
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maxQ∈Qε(X ) Iθ(Q)
Fortunately we have continuity at θ ∈ Θ:

Iθ(Q∗
θ0) −−−→

θ0→θ
max
Q∈Qε

Iθ(Q).

Thus, we only need to solve

max
Q∈Qε(X )

Iθ̃n1
(Q),

for a consistent estimator θ̃n1 .

In general, for regular parametric models, we have

sup
Q∈Qε(X )

|Iθ(Q) − Iθ′(Q)| −−−→
θ→θ′

0.
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A TWO-STEP PROCEDURE

X1 Xn1 Xn1+1 Xn

Q0

y . . . Q0

y y Q∗
θ̃n1

y . . . Q∗
θ̃n1

y
Z1 Zn1 Zn1+1 Zny x

y x
θ̃n1 θ̂n

θ̃n1 −−−−→
n1→∞

θ

Iθ(Q∗
θ̃n1

) −−−−→
n1→∞

Iθ(Q∗
θ) = max

Q∈Qε

Iθ(Q)

But notice that for efficiency of θ̂n we need n−n1
n → 1.

the MLE in (Q∗
θ̃n1

Pθ)θ∈Θ
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GENERAL SAMPLE SPACE X Iθ =
∫

X

(
ṗθ(x)
pθ(x)

)2
pθ(x)dx

B1 B2 B3 B4 B5 B6

pθ
rθ(3) rθ(4)

rθ(2) rθ(5)

p⋅ θ

rθ(j) := Pθ(Bj(θ0)) is the pmf of a regular model on finite
sample space X̄ = {1, . . . , 6} k = 6

X

X
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GENERAL SAMPLE SPACE X Iθ =
∫

X

(
ṗθ(x)
pθ(x)

)2
pθ(x)dx

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

pθ

p⋅ θ

rθ(j) := Pθ(Bj(θ0)) is the pmf of a regular model on finite
sample space X̄ = {1, . . . , 12} k = 12

X

X
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GENERAL SAMPLE SPACE X Iθ =
∫

X

(
ṗθ(x)
pθ(x)

)2
pθ(x)dx

B1 B2 B3 B4 B21B22 B23 B24

pθ

p⋅ θ

rθ(j) := Pθ(Bj(θ0)) is the pmf of a regular model on finite
sample space X̄ = {1, . . . , 24} k = 24

X

X
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APPROXIMATION BY DISCRETE MODELS

Tk,θ : X → {1, . . . , k}, Tk,θ(x) = j ⇐⇒ x ∈ Bj(θ)

Yi = Tk,θ(Xi), Zi ∼ Q∗
θ(dz|Yi)

max
Q∈Qε,k

Iθ(QTk,θ) −−−→
k→∞

sup
Q∈Qε(X )

Iθ(Q)

▶ Use with θ = θ̃n1 .
▶ Need to solve the LP of Kairouz et al. (2016)

for large k.
▶ Efficient numerical procedures are needed.
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Example: Gaussian Location Model

Pθ = N(θ, 1), θ ∈ R
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Pθ = N(θ, 1), θ ∈ R, maxQ∈Qε,k
I0(QTk,0) ∈ R
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Pθ = N(θ, 1), θ ∈ R, Q∗ ∈ argmaxQ∈Qε,k
I0(QTk,0) ∈ Rk×k
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Theorem (Kalinin and S. (2024))
In the Gaussian location model with unit variance, if ε ≤ 1.04
the sign-mechanism Qsgn

θ that generates

Zi =
{

sgn(Xi − θ), with probability eε

1+eε

−sgn(Xi − θ), with probability 1
1+eε ,

satisfies

Iθ(Q) ≤ Iθ(Qsgn
θ ) = 2

π

(
eε − 1
eε + 1

)2
,

for all ϵ-DP mechanisms Q and all θ ∈ R.

cf. Duchi and Rogers (2019)
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ASYMPTOTIC EFFICIENCY WITH NON-INTERACTIVE

LDP

X1 X2 Xn

Q0

y Q0

y . . . . . . Q0

y
Z1 Z2 Zn

Given sanitized data Z1, . . . , Zn
iid
∼ Q0Pθ, θ ∈ Θ ⊆ Rp and a

regular estimator θ̂n : Zn → Θ of θ with

√
n(θ̂n − θ)

[Q0Pθ]n
⇝ Dθ,

then Cov(Dθ) ≽ Iθ(Q0)−1 and the MLE achieves this
asymptotic covariance matrix.
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A TWO-STEP PROCEDURE (INTERACTIVE)

X1 Xn1 Xn1+1 Xn

Q0

y . . . Q0

y y Q∗
θ̃n1

y . . . Q∗
θ̃n1

y
Z1 Zn1 Zn1+1 Zny x

y x
θ̃n1 θ̂n
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ASYMPTOTIC EFFICIENCY WITH INTERACTION

X1 X2, Z1 Xn, Z1, . . . , Zn−1

Q1

y y Q2

y y . . . . . . y Qn

y
Z1 Z1, Z2 Z1, . . . , Zn

Q(n)(dz|x) = Qn(dzn|xn, z1, . . . , zn−1) · · · Q2(dz2|x2, z1)Q1(dz1|x1)

Given sanitized data (Z1, . . . , Zn) ∼ Q(n)P n
θ , θ ∈ Θ ⊆ R and

a regular estimator θ̂n : Zn → Θ of θ with

√
n(θ̂n − θ)

[Q0Pθ]n
⇝ Dθ,

then Varθ(Dθ) ≥ [supQ∈Qε
Iθ(Q)]−1 and the two-step pro-

cedure achieves this asymptotic variance.



Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

ASYMPTOTIC EFFICIENCY WITH INTERACTION

Given sanitized data (Z1, . . . , Zn) ∼ Q(n)P n
θ , θ ∈ Θ ⊆ R and

a regular estimator θ̂n : Zn → Θ of θ with

√
n(θ̂n − θ)

[Q0Pθ]n
⇝ Dθ,

then Varθ(Dθ) ≥ [supQ∈Qε
Iθ(Q)]−1 and the two-step pro-

cedure achieves this asymptotic variance.

▶ We proof LAMN of (Zn, Gn, (Q(n)P n
θ )θ∈Θ), n ∈ N, along

subsequences.
▶ We need DQM, and separability of the σ-Algebras of

(X , F) and (Z, G).
▶ For efficiency of the two-step MLE we use more classical

differentiability conditions on the density θ 7→ pθ(x).
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SUMMARY

▶ We develop a theory of asymptotic efficiency for
(sequentially) interactive local differential privacy.

▶ We provide a numerical procedure that identifies a nearly
optimal privacy mechanism Q∗

θ up to arbitrary precision.
▶ We propose a sequentially interactive private estimation

procedure that achieves the asymptotically minimal
variance.

Open:

▶ Numerically efficient algorithms.
▶ For p > 1, consider infQ ℓ(Iθ(Q)−1) for an ℓ : Rp×p → R.
▶ Nuisance parameters (finite- and infinite-dimensional)
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Thank you!
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REGULARITY CONDITIONS

▶ Consistent quantizers Tk,θ : X → {1, . . . , k} exist if
P = (Pθ)θ∈Θ is DQM with jointly measurable pθ(x) and
sθ(x), X ⊆ Rd and the dominating measure µ is finite on
compact sets.

▶ For uniform continuity of Fisher-Information we need
DQM of the model with jointly measurable pθ(x) and sθ(x)
and continuity of θ 7→ sθ

√
pθ : Θ → L2(µ, ∥ · ∥2).
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