|--|

Statistical Efficiency in Local Differential Privacy

Lukas Steinberger (University of Vienna) joint with Nikita Kalinin, ISTA

Institute for Statistics and Mathematics, WU January 8, 2025

research supported by Austrian Science Fund (FWF): I 5484-N

Differential Privacy 0000000	Local DP 0000	Efficiency I 0000	Maximizing Fisher-Information	Efficiency II 0000	Summary 0	References

1. Differential Privacy

- 2. Local DP
- 3. Efficiency I
- 4. Maximizing Fisher-Information
- 5. Efficiency II
- 6. Summary

ISSUES OF DATA PRIVACY PROTECTION

This is an old problem with increasing relevance in the modern era of big data. For instance:

- official statistics: statistical disclosure control
- large scale medical research
- smart phone user data
- social media data
- ► social or psychological surveys: *evasive answer bias*
- ► IoT
- ► etc.

Differential Privacy Local DP Efficiency I 0000 Befficiency I 0000 Be

EXAMPLE: DATA FROM SMART METER

(from Giaconi et al., 2018)

DEFINITION OF DIFFERENTIAL PRIVACY

Dwork et al. (2006) proposed the following.

Distribution of *Z* should not depend too much on any individual contribution x_i .

Differential Privacy Local DP cooce booc booce booce

DIFFERENTIAL PRIVACY

Dwork et al. (2006) proposed the following.

► For a given original data set X = (X₁,...,X_n) in Xⁿ, randomly generate sanitized data Z in Z, with conditional distribution

$$Q(A|x) = P(Z \in A|X = x).$$

- The conditional distribution (Markov kernel)
 Q ∈ M(Xⁿ → Z) is called a *privacy mechanism* or a *channel*.
- ► The distribution of the sanitized data *Z* is given by

$$QP := \int_{\mathcal{X}^n} Q(\cdot|x) \, dP(x).$$

DIFFERENTIAL PRIVACY

For $x, x' \in \mathcal{X}^n$, consider the Hamming distance

$$d_0(x, x') = \#\{i : x_i \neq x'_i\}.$$

Definition (Dwork et al., 2006)

Fix a privacy parameter $\varepsilon \in (0, \infty)$. The Markov kernel $Q \in \mathcal{M}(\mathcal{X}^n \to \mathcal{Z})$ is called ε -differentially private if for all $x, x' \in \mathcal{X}^n$ with $d_0(x, x') \leq 1$, we have

$$Q(A|x) \leq e^{\varepsilon}Q(A|x'), \quad \forall A \in \mathcal{G},$$

ε -Differential privacy

$$\begin{aligned} \forall A, \forall x, x' : d_0(x, x') &\leq 1 : \\ e^{-\varepsilon} &\leq \frac{Q(A|x)}{Q(A|x')} \leq e^{\varepsilon} \end{aligned}$$

- ► Idea: The conditional distribution of *Z* given *X* = *x* does not depend too much on the data of the *i*-th individual in the database, thereby protecting its privacy.
- ▶ The smaller $\varepsilon \in (0, \infty)$, the stronger is the privacy protection.

ε -Differential privacy

$$\begin{aligned} \forall A, \forall x, x' : d_0(x, x') &\leq 1 : \\ e^{-\varepsilon} &\leq \frac{Q(A|x)}{Q(A|x')} \leq e^{\varepsilon} \end{aligned}$$

- ► Idea: The conditional distribution of *Z* given *X* = *x* does not depend too much on the data of the *i*-th individual in the database, thereby protecting its privacy.
- The smaller $\varepsilon \in (0, \infty)$, the stronger is the privacy protection.

EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

Maximizing Fisher-Information

Efficiency II

Summarv

References

- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M]$.
- We want to release an estimate of θ := E[X₁] while respecting ε-DP.
- Publish $Z = \overline{X}_n + Lap(n\varepsilon/(2M))$, where

Differential Privacy

0000000

Local DP

Efficiency I

$$f_{Lap(\gamma)}(z) = \frac{\gamma}{2} \exp(-\gamma |z|).$$

EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

Maximizing Fisher-Information

Efficiency II

Summarv

References

- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M]$.
- We want to release an estimate of θ := E[X₁] while respecting ε-DP.
- Publish $Z = \overline{X}_n + Lap(n\varepsilon/(2M))$, where

Differential Privacy

0000000

Local DP

Efficiency I

$$f_{Lap(\gamma)}(z) = \frac{\gamma}{2} \exp(-\gamma |z|).$$

$$\frac{q(z|x)}{q(z|x')} = \exp\left(-\frac{n\varepsilon}{2M}\left[|z - \bar{x}_n| - |z - \bar{x}'_n|\right]\right)$$
$$\leq \exp\left(\frac{n\varepsilon}{2M}|\bar{x}_n - \bar{x}'_n|\right)$$
$$= \exp\left(\frac{n\varepsilon}{2M}\left|\frac{x_{i_0} - x'_{i_0}}{n}\right|\right) \leq e^{\varepsilon}.$$

EXAMPLE - LAPLACE NOISE FOR MEAN ESTIMATION

Maximizing Fisher-Information

Efficiency II

Summarv

References

- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M]$.
- ► We want to release an estimate of θ := E[X₁] while respecting ε-DP.
- Publish $Z = \overline{X}_n + Lap(n\varepsilon/(2M))$, where

Differential Privacy

000000

Local DP

Efficiency I

$$f_{Lap(\gamma)}(z) = \frac{\gamma}{2} \exp(-\gamma |z|).$$

This requires a trusted third party who collects X₁,..., X_n, computes X
_n and adds the Laplace noise.
 ⇒ *local* differential privacy

LOCAL DIFFERENTIAL PRIVACY

We say that an ε -DP channel $Q \in \mathcal{M}(\mathcal{X}^n \to \mathcal{Z}^n)$ provides **local privacy**, if individual *i* can generate its sanitized data Z_i on its 'local machine', without ever giving away its original data X_i .

No trusted third party needed

Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

LOCAL PRIVACY - NON-INTERACTIVE CASE

Definition

We say that a channel $Q \in \mathcal{M}(\mathcal{X}^n \to \mathcal{Z}^n)$ is **non-interactive** (NI), if there exist channels $Q_i \in \mathcal{M}(\mathcal{X} \to \mathcal{Z})$, such that

$$Q(dz|x) = \bigotimes_{i=1}^{n} Q_i(dz_i|x_i).$$

 $Q \text{ is } \varepsilon\text{-}\mathsf{DP} \iff Q_i(A_i|x_i) \leq e^{\varepsilon}Q_i(A_i|x_i'), \ \forall i, A_i, x_i, x_i'$

EXAMPLE: CENTRAL VS. LOCAL MEAN ESTIMATION

Maximizing Fisher-Information

Efficiency II

Summarv

References

- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M]$.
- Estimate $\theta := \mathbb{E}[X_1]$ while respecting ε -DP.

Efficiency I

With a central data curator: $\hat{\theta}_n = \bar{X}_n + Lap(n\varepsilon/(2M))$

•
$$\mathbb{E}[\hat{\theta}_n] = \theta$$

• $\operatorname{Var}[\hat{\theta}_n] = \frac{\operatorname{Var}[X_1]}{n} + \frac{8M^2}{n^2\varepsilon^2}$

Local DP

0000

Differential Privacy

With local privacy: $Z_i = X_i + Lap(\varepsilon/(2M)), \hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n Z_i$

•
$$\mathbb{E}[\hat{\theta}_n] = \theta$$

• $\operatorname{Var}[\hat{\theta}_n] = \frac{\operatorname{Var}[X_1]}{n} + \frac{8M^2}{n\varepsilon^2}$

Additional noise is non-negligible for $n \to \infty$.

EXAMPLE: LOCALLY PRIVATE MEAN ESTIMATION

Maximizing Fisher-Information

Efficiency II

Summarv

References

- Let $X_1, \ldots, X_n \stackrel{iid}{\sim} P \in \mathcal{P}(\mathcal{X})$ with $\mathcal{X} = [-M, M]$.
- Estimate $\theta := \mathbb{E}[X_1]$ while respecting ε -DP.

With local privacy: $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n Z_i$

Efficiency I

Local DP

000

Differential Privacy

►
$$Z_i = X_i + Lap(\varepsilon/(2M))$$

► $\mathbb{E}[\hat{\theta}_n] = \theta$
► $\operatorname{Var}[\hat{\theta}_n] = \frac{Var[X_1]}{n} + \frac{8M^2}{n\varepsilon^2} = \frac{1}{n} \left(\sigma^2 + \frac{8M^2}{\varepsilon^2}\right)$
► $Z_i = \pm z_0, \text{ w.p. } \frac{1}{2} \left(1 \pm \frac{X_i}{z_0}\right), \text{ where } z_0 := M \frac{e^{\varepsilon} + 1}{e^{\varepsilon} - 1}.$
► $\mathbb{E}[\hat{\theta}_n] = \mathbb{E}[\mathbb{E}[Z_1|X_1]] = \mathbb{E}[X_1] = \theta$
► $\operatorname{Var}[\hat{\theta}_n] = \frac{1}{n} \left(z_0^2 - \theta^2\right)$

Most of the literature deals with minimax rates of convergence. Can't distinguish mechanisms!

ASYMPTOTIC EFFICIENCY

 classical parametric estimation problem: (Hájek, 1970; Le Cam, 1960)

Given data $X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^p$, and a regular estimator $\hat{\theta}_n : \mathcal{X}^n \to \Theta$ of θ with

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{P_{\theta}^n}{\leadsto} D_{\theta},$$

then $Cov(D_{\theta}) \ge I_{\theta}^{-1}$ and the MLE achieves this minimal asymptotic covariance matrix.

ASYMPTOTIC EFFICIENCY

Differentiability in Quadratic Mean (DQM)

The model $(P_{\theta})_{\theta \in \Theta}$ with $\Theta \subseteq \mathbb{R}^p$ is called *differentiable in quadratic mean* at the point $\theta \in \Theta$, if θ is an interior point of Θ and there exists a (σ -finite) dominating measure μ such that the corresponding μ -densities $p_{\theta} = \frac{dP_{\theta}}{d\mu}$ satisfy

$$\int_{\mathcal{X}} \left(\sqrt{p_{\theta+h}(x)} - \sqrt{p_{\theta}(x)} - \frac{1}{2} h^T s_{\theta}(x) \sqrt{p_{\theta}(x)} \right)^2 d\mu(x) = o(\|h\|^2)$$

as $h \to 0$, for some measurable vector valued function $s_{\theta} : \mathcal{X} \to \mathbb{R}^p$. The function s_{θ} is called the *score function* at θ .

Define $\dot{p}_{\theta} := s_{\theta} p_{\theta}$.

ASYMPTOTIC EFFICIENCY

Regular Estimator

An estimator $\hat{\theta}_n : \mathcal{X}^n \to \Theta$ in a DQM model is called regular at $\theta \in \Theta$ if

$$\sqrt{n} \left(\hat{\theta}_n - (\theta + h/\sqrt{n}) \right) \stackrel{P^n_{\theta + h/\sqrt{n}}}{\leadsto} D_{\theta}, \quad \forall h \in \mathbb{R}^p,$$

where the limiting distribution D_{θ} does not depend on *h*.

Differential Privacy Local DP **Efficiency I** Maximizing Fisher-Information Efficiency II Summary References

ASYMPTOTIC EFFICIENCY WITH LDP

private estimation problem:

Given sanifized data $Z_1, \ldots, Z_n \stackrel{iid}{\sim} Q_0 P_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^p$ and a regular estimator $\hat{\theta}_n : \mathbb{Z}^n \to \Theta$ of θ with

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{[Q_0 P_\theta]^n} D_\theta,$$

then $\operatorname{Cov}(D_{\theta}) \geq I_{\theta}(Q_0)^{-1}$ and the MLE achieves this asymptotic covariance matrix.

$$\mathcal{Q}_{\varepsilon}(\mathcal{X}) = \bigcup_{(\mathcal{Z},\mathcal{G})} \left\{ Q \in \mathcal{M}(\mathcal{X} \to \mathcal{Z}) \middle| Q(A|x) \le e^{\varepsilon} Q(A|x'), \ \forall A, x, x' \right\}$$

- infinite dimensional domain $Q_{\varepsilon}(\mathcal{X})$
- maximizing a convex function on a convex set (local optima!)
- maximizer depends on θ ?!

$$\begin{aligned} \mathcal{Q}_{\varepsilon,k} &= \bigcup_{\mathcal{Z}:|\mathcal{Z}|=k} \Big\{ Q \in \mathcal{M}(\mathcal{X} \to \mathcal{Z}) \Big| Q(A|x) \le e^{\varepsilon} Q(A|x') \; \forall A, x, x' \Big\} \\ &\triangleq \Big\{ Q \in [0,1]^{k \times k} \Big| \sum_{i=1}^{k} Q_{ij} = 1, Q_{ij} \le e^{\varepsilon} Q_{ij'} \; \forall i, j, j' \Big\} \end{aligned}$$

- Notice that we went from all possible measurable spaces $(\mathcal{Z}, \mathcal{G})$ to $\mathcal{Z} = \{1, \dots, k\}$.
- Kairouz et al. (2016) provide an equivalent LP with time complexity O(2^k).

$$\begin{aligned} \mathcal{Q}_{\varepsilon,k} &= \bigcup_{\mathcal{Z}:|\mathcal{Z}|=k} \left\{ Q \in \mathcal{M}(\mathcal{X} \to \mathcal{Z}) \Big| Q(A|x) \le e^{\varepsilon} Q(A|x') \; \forall A, x, x' \right\} \\ &\triangleq \left\{ Q \in [0,1]^{k \times k} \Big| \sum_{i=1}^{k} Q_{ij} = 1, Q_{ij} \le e^{\varepsilon} Q_{ij'} \; \forall i, j, j' \right\} \end{aligned}$$

- ► Notice that we went from all possible measurable spaces (Z, G) to Z = {1,...,k}.
- Kairouz et al. (2016) provide an equivalent LP with time complexity O(2^k).

$$\begin{aligned} \mathcal{Q}_{\varepsilon,k} &= \bigcup_{\mathcal{Z}:|\mathcal{Z}|=k} \left\{ Q \in \mathcal{M}(\mathcal{X} \to \mathcal{Z}) \Big| Q(A|x) \le e^{\varepsilon} Q(A|x') \; \forall A, x, x' \right\} \\ &\triangleq \left\{ Q \in [0,1]^{k \times k} \Big| \sum_{i=1}^{k} Q_{ij} = 1, Q_{ij} \le e^{\varepsilon} Q_{ij'} \; \forall i, j, j' \right\} \end{aligned}$$

- ► Notice that we went from all possible measurable spaces (Z, G) to Z = {1,...,k}.
- ► Kairouz et al. (2016) provide an equivalent LP with time complexity O(2^k).

$$\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$$

• Bernoulli(
$$\theta$$
):
 $p_{\theta}(x) = \theta^{x}(1-\theta)^{1-x}, \theta \in (0,1), x \in \mathcal{X} = \{0,1\}$
 $Q^{*} = \frac{1}{1+e^{\varepsilon}} \begin{pmatrix} e^{\varepsilon} & 1\\ 1 & e^{\varepsilon} \end{pmatrix}$

See Kairouz et al. (2016)

Differential Privacy 0000000	Local DP 0000	Efficiency I 0000	Maximizing Fisher-Information	Efficiency II 0000	Summary O	References

$$\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$$

• Binomial(2,
$$\theta$$
):
 $p_{\theta}(x) = \binom{2}{x} \theta^x (1 - \theta)^{2-x}, \theta \in (0, 1), x \in \mathcal{X} = \{0, 1, 2\}$

$$Q^* = ?$$

Differential Privacy 0000000	Local DP 0000	Efficiency I 0000	Maximizing Fisher-Information	Efficiency II 0000	Summary 0	References

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

$$\textbf{Binomial}(2,\theta): \\ p_{\theta}(x) = \binom{2}{x} \theta^{x} (1-\theta)^{2-x}, \theta \in (0,1), x \in \mathcal{X} = \{0,1,2\} \\ Q^{*} = \frac{1}{2+e^{\varepsilon}} \begin{pmatrix} e^{\varepsilon} & 1 & 1\\ 1 & e^{\varepsilon} & 1\\ 1 & 1 & e^{\varepsilon} \end{pmatrix}$$
?

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

• Binomial(2,
$$\theta$$
):
 $p_{\theta}(x) = \binom{2}{x} \theta^x (1 - \theta)^{2-x}, \theta \in (0, 1), x \in \mathcal{X} = \{0, 1, 2\}$

$$Q_{\theta}^{*} = \begin{cases} \frac{1}{1+e^{\varepsilon}} \begin{pmatrix} e^{\varepsilon} & 1 & 1\\ 1 & e^{\varepsilon} & e^{\varepsilon} \\ 0 & 0 & 0 \end{pmatrix}, & 0 < \theta \leq \frac{1}{2} - c_{\varepsilon} \\ \begin{pmatrix} e^{\varepsilon} & 1 & 1\\ 1 & e^{\varepsilon} & 1\\ 1 & 1 & e^{\varepsilon} \end{pmatrix}, & \frac{1}{2} - c_{\varepsilon} < \theta < \frac{1}{2} + c_{\varepsilon} \\ \begin{pmatrix} e^{\varepsilon} & e^{\varepsilon} & 1\\ 1 & 1 & e^{\varepsilon} \\ 0 & 0 & 0 \end{pmatrix}, & \frac{1}{2} + c_{\varepsilon} \leq \theta < 1 \end{cases}$$

See Hucke (2019)

Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

```
\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)
```


Differential Privacy 0000000	Local DP 0000	Efficiency I 0000	Maximizing Fisher-Information	Efficiency II 0000	Summary 0	References

 $\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$

$$\max_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$$

Fortunately we have continuity at $\theta \in \Theta$:

$$I_{\theta}(Q_{\theta_0}^*) \xrightarrow[\theta_0 \to \theta]{} \max_{Q \in \mathcal{Q}_{\varepsilon}} I_{\theta}(Q).$$

Thus, we only need to solve

$$\max_{Q\in\mathcal{Q}_{\varepsilon}(\mathcal{X})}I_{\tilde{\theta}_{n_1}}(Q),$$

for a consistent estimator $\tilde{\theta}_{n_1}$.

In general, for regular parametric models, we have

$$\sup_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} |I_{\theta}(Q) - I_{\theta'}(Q)| \xrightarrow[\theta \to \theta']{} 0$$

A TWO-STEP PROCEDURE

But notice that for efficiency of $\hat{\theta}_n$ we need $\frac{n-n_1}{n} \to 1$.

APPROXIMATION BY DISCRETE MODELS

$$T_{k,\theta}: \mathcal{X} \to \{1, \dots, k\}, \quad T_{k,\theta}(x) = j \iff x \in B_j(\theta)$$

$$Y_i = T_{k,\theta}(X_i), \quad Z_i \sim Q_{\theta}^*(dz|Y_i)$$

$$\max_{Q \in \mathcal{Q}_{\varepsilon,k}} I_{\theta}(QT_{k,\theta}) \xrightarrow[k \to \infty]{} \sup_{Q \in \mathcal{Q}_{\varepsilon}(\mathcal{X})} I_{\theta}(Q)$$

- Use with $\theta = \tilde{\theta}_{n_1}$.
- Need to solve the LP of Kairouz et al. (2016) for large k.
- Efficient numerical procedures are needed.

Differential Privacy 0000000	Local DP 0000	Efficiency I 0000	Maximizing Fisher-Information	Efficiency II 0000	Summary 0	References

Example: Gaussian Location Model

$P_{\theta} = N(\theta, 1), \ \theta \in \mathbb{R}$

k

 $_{k}$

Differential Privacy 0000000	Local DP 0000	Efficiency I 0000	Maximizing Fisher-Information	Efficiency II 0000	Summary 0	References

Theorem (Kalinin and S. (2024))

In the Gaussian location model with unit variance, if $\varepsilon \leq 1.04$ the sign-mechanism Q_{θ}^{sgn} that generates

$$Z_{i} = \begin{cases} \operatorname{sgn}(X_{i} - \theta), & \text{with probability } \frac{e^{\varepsilon}}{1 + e^{\varepsilon}} \\ -\operatorname{sgn}(X_{i} - \theta), & \text{with probability } \frac{1}{1 + e^{\varepsilon}} \end{cases}$$

satisfies

$$I_{\theta}(Q) \leq I_{\theta}(Q_{\theta}^{sgn}) = \frac{2}{\pi} \left(\frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}\right)^2,$$

for **all** ϵ -DP mechanisms Q and all $\theta \in \mathbb{R}$.

cf. Duchi and Rogers (2019)

Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

Given sanifized data $Z_1, \ldots, Z_n \stackrel{iid}{\sim} Q_0 P_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^p$ and a regular estimator $\hat{\theta}_n : \mathbb{Z}^n \to \Theta$ of θ with

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{[\mathbf{Q}_0 P_\theta]^n} D_\theta,$$

then $\operatorname{Cov}(D_{\theta}) \geq I_{\theta}(Q_0)^{-1}$ and the MLE achieves this asymptotic covariance matrix.

A TWO-STEP PROCEDURE (INTERACTIVE)

Differential Privacy Local DP Efficiency I Maximizing Fisher-Information Efficiency II Summary References

 $Q^{(n)}(dz|x) = Q_n(dz_n|x_n, z_1, \dots, z_{n-1}) \cdots Q_2(dz_2|x_2, z_1)Q_1(dz_1|x_1)$

Given sanitized data $(Z_1, \ldots, Z_n) \sim Q^{(n)} P_{\theta}^n, \theta \in \Theta \subseteq \mathbb{R}$ and a regular estimator $\hat{\theta}_n : \mathbb{Z}^n \to \Theta$ of θ with

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{[Q_0 P_\theta]^n} D_\theta,$$

then $\operatorname{Var}_{\theta}(D_{\theta}) \geq [\sup_{Q \in \mathcal{Q}_{\varepsilon}} I_{\theta}(Q)]^{-1}$ and the two-step procedure achieves this asymptotic variance.

Differential Privacy

Local DP Efficiency I 0000 0000 Maximizing Fisher-Information

Efficiency II

Summary References

ASYMPTOTIC EFFICIENCY WITH INTERACTION

Given sanifized data $(Z_1, \ldots, Z_n) \sim Q^{(n)} P_{\theta}^n, \theta \in \Theta \subseteq \mathbb{R}$ and a regular estimator $\hat{\theta}_n : \mathbb{Z}^n \to \Theta$ of θ with

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{[Q_0 P_\theta]^n} D_\theta,$$

then $\operatorname{Var}_{\theta}(D_{\theta}) \geq [\sup_{Q \in \mathcal{Q}_{\varepsilon}} I_{\theta}(Q)]^{-1}$ and the two-step procedure achieves this asymptotic variance.

- ► We proof LAMN of $(\mathcal{Z}^n, \mathcal{G}^n, (Q^{(n)}P_{\theta}^n)_{\theta \in \Theta}), n \in \mathbb{N}$, along subsequences.
- ► We need DQM, and separability of the *σ*-Algebras of (*X*, *F*) and (*Z*, *G*).
- ► For efficiency of the two-step MLE we use more classical differentiability conditions on the density $\theta \mapsto p_{\theta}(x)$.

SUMMARY

- We develop a theory of asymptotic efficiency for (sequentially) interactive local differential privacy.
- ► We provide a numerical procedure that identifies a nearly optimal privacy mechanism Q^{*}_θ up to arbitrary precision.
- We propose a sequentially interactive private estimation procedure that achieves the asymptotically minimal variance.

Open:

- Numerically efficient algorithms.
- For p > 1, consider $\inf_Q \ell(I_\theta(Q)^{-1})$ for an $\ell : \mathbb{R}^{p \times p} \to \mathbb{R}$.
- ► Nuisance parameters (finite- and infinite-dimensional)

Differential Privacy 0000000	Local DP 0000	Efficiency I 0000	Maximizing Fisher-Information	Efficiency II 0000	Summary 0	References

Thank you!

- Duchi, J. and Rogers, R. (2019). Lower bounds for locally private estimation via communication complexity. PMLR, 99:1161–1191.
- Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Halevi, S. and Rabin, T., editors, *Theory of Cryptography*, Lecture Notes in Computer Science, pages 265–284. Springer.
- Giaconi, G., Gunduz, D., and Poor, H. V. (2018). Privacy-aware smart metering: Progress and challenges. IEEE Signal Processing Magazine, 35(6):59–78.
- Hájek, J. (1970). A characterization of limiting distributions of regular estimates. Z. Wahrsch. verw. Gebiete, 14(4):323–330.
- Hucke, U. (2019). Local differential privacy and estimation in the binomial model. Master's thesis, University of Freiburg.
- Kairouz, P., Oh, S., and Viswanath, P. (2016). Extremal mechanisms for local differential privacy. J. Mach. Learn. Res., 17(1):492–542.
- Kalinin, N. and Steinberger, L. (2024). Efficient estimation of a gaussian mean with local differential privacy. arXiv:2402.04840.
- Le Cam, L. (1960). Locally asymptotically normal families of distributions. Univ. California Publ. Statist., 3:37-98.

Steinberger, L. (2024). Efficiency in local differential privacy. Ann. Statist., 52(5):2139-2166.

REGULARITY CONDITIONS

- Consistent quantizers $T_{k,\theta} : \mathcal{X} \to \{1, \dots, k\}$ exist if $\mathcal{P} = (P_{\theta})_{\theta \in \Theta}$ is DQM with jointly measurable $p_{\theta}(x)$ and $s_{\theta}(x), \mathcal{X} \subseteq \mathbb{R}^{d}$ and the dominating measure μ is finite on compact sets.
- ► For uniform continuity of Fisher-Information we need DQM of the model with jointly measurable $p_{\theta}(x)$ and $s_{\theta}(x)$ and continuity of $\theta \mapsto s_{\theta} \sqrt{p_{\theta}} : \Theta \to L_2(\mu, \|\cdot\|_2)$.