

The surprising effect of reshuffling the data during hyperparameter tuning

LMU Munich Thomas Nagler <t.nagler@lmu.de>

Hyperparameter Optimization in ML

• Goal: Fit a model to data that predicts new observations well.

Hyperparameter Optimization in ML

- Goal: Fit a model to data that predicts new observations well.
- An algorithm g with hyperparameter λ ∈ Λ maps a data set D to a model h = g_λ(D) ∈ H.
- Examples for hyperparameter λ:
 - Penalty parameter in Lasso regression.
 - Depth and size of a tree ensemble.
 - Width and depth of neural network.

Hyperparameter Optimization in ML

- Goal: Fit a model to data that predicts new observations well.
- An algorithm g with hyperparameter λ ∈ Λ maps a data set D to a model h = g_λ(D) ∈ H.
- Examples for hyperparameter λ:
 - Penalty parameter in Lasso regression.
 - Depth and size of a tree ensemble.
 - Width and depth of neural network.
- Hyperparameter optimization aims to find a λ^* minimizing the expected generalization error:

$$\lambda^* = \arg\min_{\lambda \in \Lambda} \mu(\lambda), \quad \text{where} \quad \mu(\lambda) = \mathbb{E}[\ell(\mathbf{Z}, g_{\lambda}(\mathcal{D}))],$$

where $\ell(\mathbf{Z}, h)$ denotes the loss of model h on a new observation \mathbf{Z} .

- Standard approach:
 - 1. Split data \mathcal{D} into training and validation set $\mathcal{D} = (\mathcal{T}, \mathcal{V})$.
 - 2. Train models $g_{\lambda_1}(\mathcal{T}), \ldots, g_{\lambda_J}(\mathcal{T})$.
 - 3. Evaluate models on \mathcal{V} .
 - 4. Choose λ_j with best validation loss.
- Why don't we reshuffle the data between evaluations of λ₁,...,λ_J?

Sounds like a terrible idea

The experiments

Agenda

1 The problem

2 Theoretical analysis

3 Benchmarks

- Dataset \$\mathcal{D} = {\mathbb{Z}_i}_{i=1}^n\$ of *i.i.d.* random variables from distribution \$P\$, where \$\mathbb{Z}_i = (\mathbb{X}_i, \mathcal{Y}_i)\$ in the supervised setting.
- A finite set $\Lambda = \{\lambda_1, \dots, \lambda_J\} \subseteq \mathbb{R}^d$ of HPCs to be evaluated.

- Dataset \$\mathcal{D} = {\mathbb{Z}_i}_{i=1}^n\$ of *i.i.d.* random variables from distribution \$P\$, where \$\mathbb{Z}_i = (\mathbb{X}_i, Y_i)\$ in the supervised setting.
- A finite set $\Lambda = \{\lambda_1, \dots, \lambda_J\} \subseteq \mathbb{R}^d$ of HPCs to be evaluated.
- To estimate the generalization error, construct a resampling:
 - Draw *M* sets *I*_{1,j},..., *I*_{M,j} ⊂ {1,..., *n*} of validation indices with n_{valid} = [αn] instances.
 - ▶ Validation and training sets $\mathcal{V}_{m,j} = \{\mathbf{Z}_i\}_{i \in \mathcal{I}_{m,j}}, \mathcal{T}_{m,j} = \{\mathbf{Z}_i\}_{i \notin \mathcal{I}_{m,j}}.$

- Dataset \$\mathcal{D} = {\mathbb{Z}_i}_{i=1}^n\$ of *i.i.d.* random variables from distribution \$P\$, where \$\mathbb{Z}_i = (\mathbb{X}_i, Y_i)\$ in the supervised setting.
- A finite set $\Lambda = \{\lambda_1, \dots, \lambda_J\} \subseteq \mathbb{R}^d$ of HPCs to be evaluated.
- To estimate the generalization error, construct a resampling:
 - Draw *M* sets *I*_{1,j},..., *I*_{M,j} ⊂ {1,..., *n*} of validation indices with n_{valid} = [αn] instances.
 - ▶ Validation and training sets $\mathcal{V}_{m,j} = \{\mathbf{Z}_i\}_{i \in \mathcal{I}_{m,j}}, \mathcal{T}_{m,j} = \{\mathbf{Z}_i\}_{i \notin \mathcal{I}_{m,j}}.$
- Define *M*-fold validation loss

$$\begin{split} \widehat{\mu}(\boldsymbol{\lambda}_{j}) &= \frac{1}{M} \sum_{m=1}^{M} L(\mathcal{V}_{m,j}, g_{\boldsymbol{\lambda}_{j}}(\mathcal{T}_{m,j})), \\ \text{where} \quad L(\mathcal{V}_{m,j}, g_{\boldsymbol{\lambda}_{j}}(\mathcal{T}_{m,j})) &= \frac{1}{n_{\text{valid}}} \sum_{i \in \mathcal{I}_{m,j}} \ell(\boldsymbol{Z}_{i}, g_{\boldsymbol{\lambda}_{j}}(\mathcal{T}_{m,j})), \end{split}$$

- Recall we want to minimize $\mu(\lambda) = \mathbb{E}[\ell(\boldsymbol{Z}, g_{\lambda}(\mathcal{T}))].$
- Since μ is unknown, take

$$\widehat{\boldsymbol{\lambda}} = \arg\min_{\boldsymbol{\lambda} \in \Lambda} \widehat{\mu}(\boldsymbol{\lambda}),$$

hoping $\mu(\widehat{\boldsymbol{\lambda}})$ will be small.

- Recall we want to minimize $\mu(\lambda) = \mathbb{E}[\ell(\boldsymbol{Z}, g_{\lambda}(\mathcal{T}))].$
- Since μ is unknown, take

$$\widehat{oldsymbol{\lambda}} = rg\min_{oldsymbol{\lambda} \in \Lambda} \widehat{\mu}(oldsymbol{\lambda}),$$

hoping $\mu(\widehat{\boldsymbol{\lambda}})$ will be small.

• Typically, same splits for each HPC: $\mathcal{I}_{m,j} = \mathcal{I}_m$ for all j and m.

- Recall we want to minimize $\mu(\lambda) = \mathbb{E}[\ell(\boldsymbol{Z}, g_{\lambda}(\mathcal{T}))].$
- Since μ is unknown, take

$$\widehat{\boldsymbol{\lambda}} = \arg\min_{\boldsymbol{\lambda} \in \Lambda} \widehat{\mu}(\boldsymbol{\lambda}),$$

hoping $\mu(\widehat{\boldsymbol{\lambda}})$ will be small.

- Typically, same splits for each HPC: $\mathcal{I}_{m,j} = \mathcal{I}_m$ for all j and m.
- We analyze the effect of reshuffling train-validation splits (i.e., $\mathcal{I}_{m,j} \neq \mathcal{I}_{m,j'}$ for $j \neq j'$).
 - 1. How does reshuffling affect the validation loss surface $\widehat{\mu}(\boldsymbol{\lambda})$?
 - 2. How does this affect the generalization error $\mu(\widehat{\lambda})$?

Theorem

Under regularity conditions,

$$\sqrt{n}\left(\widehat{\mu}(\boldsymbol{\lambda}_{j})-\mu(\boldsymbol{\lambda}_{j})\right)_{j=1}^{J} \rightarrow_{d} \mathcal{N}(0, \Sigma),$$

where

$$\Sigma_{i,j} = \tau_{i,j,M} \mathcal{K}(\lambda_i, \lambda_j),$$

$$\tau_{i,j,M} = \lim_{n \to \infty} \frac{1}{nM^2 \alpha^2} \sum_{s=1}^n \sum_{m=1}^M \sum_{m'=1}^M \Pr(s \in \mathcal{I}_{m,i} \cap \mathcal{I}_{m',j}),$$

and

$$\begin{split} \mathcal{K}(\boldsymbol{\lambda}_i,\boldsymbol{\lambda}_j) &= \lim_{n \to \infty} \operatorname{Cov}[\bar{\ell}_n(\boldsymbol{Z}',\boldsymbol{\lambda}_i),\bar{\ell}_n(\boldsymbol{Z}',\boldsymbol{\lambda}_j)],\\ \bar{\ell}_n(\boldsymbol{z},\boldsymbol{\lambda}) &= \mathbb{E}[\ell(\boldsymbol{z},g_{\boldsymbol{\lambda}}(\mathcal{T}))] - \mathbb{E}[\ell(\boldsymbol{Z},g_{\boldsymbol{\lambda}}(\mathcal{T}))]. \end{split}$$

$$\sqrt{n} \left(\widehat{\mu}(\boldsymbol{\lambda}_j) - \mu(\boldsymbol{\lambda}_j)\right)_{j=1}^J \rightarrow_d \mathcal{N}(0, \Sigma), \quad \Sigma_{i,j} = \tau_{i,j,M} \mathcal{K}(\boldsymbol{\lambda}_i, \boldsymbol{\lambda}_j).$$

Most common examples

$$\tau_{i,j,M} = \begin{cases} \sigma^2, & i = j \\ \tau^2 \sigma^2, & i \neq j. \end{cases},$$

$$\sqrt{n} \left(\widehat{\mu}(\boldsymbol{\lambda}_j) - \mu(\boldsymbol{\lambda}_j)\right)_{j=1}^J \rightarrow_d \mathcal{N}(0, \Sigma), \quad \Sigma_{i,j} = \tau_{i,j,M} \mathcal{K}(\boldsymbol{\lambda}_i, \boldsymbol{\lambda}_j).$$

Most common examples

-

$$\tau_{i,j,M} = \begin{cases} \sigma^2, & i = j \\ \tau^2 \sigma^2, & i \neq j. \end{cases},$$

Method	σ^2	$ au^2$
holdout (HO)	$1/\alpha$	1
reshuffled HO	1/lpha	α
M-fold CV	1	1
reshuffled <i>M</i> -fold CV	1	1
<i>M</i> -fold HO	1+(1-lpha)/Mlpha	1
reshuffled <i>M</i> -fold HO	1+(1-lpha)/Mlpha	1/(1+(1-lpha)/Mlpha)

$$\sqrt{n} \left(\widehat{\mu}(\boldsymbol{\lambda}_j) - \mu(\boldsymbol{\lambda}_j)\right)_{j=1}^J \rightarrow_d \mathcal{N}(0, \Sigma), \quad \Sigma_{i,j} = \tau_{i,j,M} \mathcal{K}(\boldsymbol{\lambda}_i, \boldsymbol{\lambda}_j).$$

Takeaways

- Reshuffling ...
 - has no effect on the variance of individual validation losses,
 - \blacktriangleright decreases the correlation between validation losses of distinct λ .
- Distant $oldsymbol{\lambda}
 eq oldsymbol{\lambda}'$ are only weakly correlated anyway.
- No effect on *M*-fold CV (information in data used exhaustively)

- To simplify the analysis, we work in the limit regime.
- Let $\epsilon(\boldsymbol{\lambda})$ be a zero-mean Gaussian process and

$$\widehat{\mu}(\boldsymbol{\lambda}_j) = \mu(\boldsymbol{\lambda}_j) + \epsilon(\boldsymbol{\lambda}_j), \quad \mathsf{Cov}(\epsilon(\boldsymbol{\lambda}), \epsilon(\boldsymbol{\lambda}')) = \begin{cases} \mathcal{K}(\boldsymbol{\lambda}, \boldsymbol{\lambda}) & \text{if } \boldsymbol{\lambda} = \boldsymbol{\lambda}', \\ \tau^2 \mathcal{K}(\boldsymbol{\lambda}, \boldsymbol{\lambda}') & \text{else}, \end{cases}$$

with $0 < \underline{\sigma}^2 \leq Var[\epsilon(\boldsymbol{\lambda})] \leq \sigma^2 < \infty$ for all $\boldsymbol{\lambda} \in \Lambda$.

- To simplify the analysis, we work in the limit regime.
- Let $\epsilon(oldsymbol{\lambda})$ be a zero-mean Gaussian process and

$$\widehat{\mu}(\boldsymbol{\lambda}_j) = \mu(\boldsymbol{\lambda}_j) + \epsilon(\boldsymbol{\lambda}_j), \quad \mathsf{Cov}(\epsilon(\boldsymbol{\lambda}), \epsilon(\boldsymbol{\lambda}')) = \begin{cases} \mathcal{K}(\boldsymbol{\lambda}, \boldsymbol{\lambda}) & \text{if } \boldsymbol{\lambda} = \boldsymbol{\lambda}', \\ \tau^2 \mathcal{K}(\boldsymbol{\lambda}, \boldsymbol{\lambda}') & \text{else}, \end{cases}$$

with $0 < \underline{\sigma}^2 \leq Var[\epsilon(\boldsymbol{\lambda})] \leq \sigma^2 < \infty$ for all $\boldsymbol{\lambda} \in \Lambda$.

- Regret analysis: compare
 - expected loss $\mu(\widehat{\boldsymbol{\lambda}})$ of empirically optimized $\widehat{\boldsymbol{\lambda}}$,
 - best achievable expected loss $\mu(\lambda^*)$.

Theorem

$$\mathbb{E}[\mu(\widehat{\boldsymbol{\lambda}}) - \mu(\boldsymbol{\lambda}^*)] \leq \sigma \sqrt{d}[\mathbf{8} + B(\tau) - A(\tau)].$$

Theorem

$$\mathbb{E}[\mu(\widehat{\boldsymbol{\lambda}}) - \mu(\boldsymbol{\lambda}^*)] \leq \sigma \sqrt{d}[\mathbf{8} + B(\tau) - A(\tau)].$$

• $B(\tau)$

quantifies how likely it is to pick a bad $\widehat{\lambda}$ because of bad luck

• more likely when ϵ is weakly correlated \Rightarrow decreasing in τ .

Theorem

$$\mathbb{E}[\mu(\widehat{\boldsymbol{\lambda}}) - \mu(\boldsymbol{\lambda}^*)] \leq \sigma \sqrt{d} [8 + B(\tau) - A(\tau)].$$

B(τ)

- quantifies how likely it is to pick a bad $\widehat{\lambda}$ because of bad luck
- more likely when ϵ is weakly correlated \Rightarrow decreasing in τ .
- A(τ)
 - quantifies how likely it is to pick a good $\widehat{\lambda}$ by luck
 - more likely when ϵ is weakly correlated \Rightarrow decreasing in τ .

(a) High signal-to-noise ratio

(b) Low signal-to-noise ratio

- We want to bound the probability that $\mu(\hat{m{\lambda}}) \mu(m{\lambda}^*)$ is large.
- Define the set of 'good' hyperparameters

$$\Lambda_{\delta} = \{ \boldsymbol{\lambda}_j \colon \mu(\boldsymbol{\lambda}_j) - \mu(\boldsymbol{\lambda}^*) \leq \delta \}.$$

- We want to bound the probability that $\mu(\hat{m{\lambda}}) \mu(m{\lambda}^*)$ is large.
- Define the set of 'good' hyperparameters

$$\Lambda_{\delta} = \{ \boldsymbol{\lambda}_j \colon \mu(\boldsymbol{\lambda}_j) - \mu(\boldsymbol{\lambda}^*) \leq \delta \}.$$

- We want to bound the probability that $\mu(\hat{\lambda}) \mu(\lambda^*)$ is large.
- Define the set of 'good' hyperparameters

$$\Lambda_{\delta} = \{ \boldsymbol{\lambda}_j \colon \mu(\boldsymbol{\lambda}_j) - \mu(\boldsymbol{\lambda}^*) \leq \delta \}.$$

It holds

$$\begin{aligned} & \Pr\left(\mu(\widehat{\boldsymbol{\lambda}}) - \mu(\boldsymbol{\lambda}^*) > \delta\right) \\ &= \Pr\left(\min_{\boldsymbol{\lambda} \notin \Lambda_{\delta}} \widehat{\mu}(\boldsymbol{\lambda}) < \min_{\boldsymbol{\lambda} \in \Lambda_{\delta}} \widehat{\mu}(\boldsymbol{\lambda})\right) \\ &\leq \Pr\left(\min_{\boldsymbol{\lambda} \notin \Lambda_{\delta}} \epsilon(\boldsymbol{\lambda}) < -\frac{\delta}{4}\right) + \Pr\left(\min_{\boldsymbol{\lambda} \in \Lambda_{\delta/2}} \epsilon(\boldsymbol{\lambda}) > \frac{\delta}{4}\right) \end{aligned}$$

- We want to bound the probability that $\mu(\hat{m{\lambda}}) \mu(m{\lambda}^*)$ is large.
- Define the set of 'good' hyperparameters

$$\Lambda_{\delta} = \{ \boldsymbol{\lambda}_j \colon \mu(\boldsymbol{\lambda}_j) - \mu(\boldsymbol{\lambda}^*) \leq \delta \}.$$

It holds

$$\begin{aligned} & \Pr\left(\mu(\widehat{\boldsymbol{\lambda}}) - \mu(\boldsymbol{\lambda}^*) > \delta\right) \\ &= \Pr\left(\min_{\boldsymbol{\lambda} \notin \Lambda_{\delta}} \widehat{\mu}(\boldsymbol{\lambda}) < \min_{\boldsymbol{\lambda} \in \Lambda_{\delta}} \widehat{\mu}(\boldsymbol{\lambda})\right) \\ &\leq \Pr\left(\min_{\boldsymbol{\lambda} \notin \Lambda_{\delta}} \epsilon(\boldsymbol{\lambda}) < -\frac{\delta}{4}\right) + \Pr\left(\min_{\boldsymbol{\lambda} \in \Lambda_{\delta/2}} \epsilon(\boldsymbol{\lambda}) > \frac{\delta}{4}\right) \end{aligned}$$

• Use Gaussian (anti-)concentration inequalities to bound two terms.

Theorem

$$\mathbb{E}[\mu(\widehat{\boldsymbol{\lambda}}) - \mu(\boldsymbol{\lambda}^*)] \leq \sigma \sqrt{d} [8 + B(\tau) - A(\tau)].$$

where

$$B(\tau) = 48 \left[\sqrt{1 - \tau^2} \sqrt{\log J} + \tau \sqrt{1 + \log(3\kappa)_+} \right]$$
$$A(\tau) = \sqrt{1 - \tau^2} (\underline{\sigma}/\sigma) \sqrt{\log\left(\frac{\sigma}{2m\eta^2}\right)_+}.$$

Theorem

$$\mathbb{E}[\mu(\widehat{\boldsymbol{\lambda}}) - \mu(\boldsymbol{\lambda}^*)] \le \sigma \sqrt{d} [8 + B(\tau) - A(\tau)].$$

where

$$B(\tau) = 48 \left[\sqrt{1 - \tau^2} \sqrt{\log J} + \tau \sqrt{1 + \log(3\kappa)_+} \right]$$
$$A(\tau) = \sqrt{1 - \tau^2} (\underline{\sigma}/\sigma) \sqrt{\log\left(\frac{\sigma}{2m\eta^2}\right)_+}.$$

• Correlation constant
$$\kappa = \sup_{\|\boldsymbol{\lambda}\|, \|\boldsymbol{\lambda}'\| \leq 1} \frac{|K(\boldsymbol{\lambda}, \boldsymbol{\lambda}) - K(\boldsymbol{\lambda}, \boldsymbol{\lambda}')|}{K(\boldsymbol{\lambda}, \boldsymbol{\lambda}) \|\boldsymbol{\lambda} - \boldsymbol{\lambda}'\|^2}$$

 Grid density η: minimal number s.t. any η-ball in {||λ|| ≤ 1} contains at least one element of Λ.

• Curvature around the minimum: $m = \sup_{\boldsymbol{\lambda} \in \Lambda} \frac{|\mu(\boldsymbol{\lambda}) - \mu(\boldsymbol{\lambda}^*)|}{\|\boldsymbol{\lambda} - \boldsymbol{\lambda}^*\|^2}.$

Signal-to-noise ratio
$$ho = rac{m\eta^2}{\sigma}$$

Two regimes

• $\rho \geq 2e$:

Signal-to-noise ratio
$$ho = rac{m\eta^2}{\sigma}$$

Two regimes

• $\rho \geq 2e$:

Signal-to-noise ratio
$$ho = rac{m\eta^2}{\sigma}$$

Two regimes

- $\rho \geq 2e$:
 - ► A(τ) = 0 and reshuffling cannot lead to an improvement of the bound.
 - Signal is much stronger than the noise, the HPO problem is so easy that reshuffling will not help.

ρ < 2*e*:

Signal-to-noise ratio
$$ho=rac{m\eta^2}{\sigma}$$

Two regimes

- $\rho \geq 2e$:
 - ► A(τ) = 0 and reshuffling cannot lead to an improvement of the bound.
 - Signal is much stronger than the noise, the HPO problem is so easy that reshuffling will not help.

ρ < 2*e*:

- $A(\tau)$ and $B(\tau)$ enter with opposing signs.
- If ϵ weakly correlated, gains in $A(\tau)$ may outweigh loss in $B(\tau)$.

Effect on generalization error: simulations

к: 4

к: 4

de:

0.20

0.19

0.18

0.275

0.250

0.225

0.200

Ŧ 0.30 0.27 0.24 0.21 100 0.00 0.25 0.50 0.75 1.00

к: 100

к: 100

Agenda

1 The problem

2 Theoretical analysis

3 Benchmarks

4 Conclusion

- **Datasets**: 10 datasets for binary classification from OpenML (<100 features, 10,000–1,000,000 observations).
 - Subsampled sets of 500, 1000, 5000 points.
- ML algorithms: CatBoost, XGBoost, Elastic Net, neural network.
- HPO strategies:
 - Random search (J = 500)
 - Bayesian optimization with HEBO or SMAC3 (J = 250).
- **Test performance** evaluated by re-training on combined train-validation sets, then testing out-of-sample (10 replications)

Benchmarking results: random search

Figure: Average improvement (compared to standard 5-fold CV) with respect to test performance (ROC AUC) for increasing n.

Benchmarking results: Bayesian optimization

Figure: Average improvement (compared to random search/holdout) with respect to test performance (ROC AUC) for different n.

Agenda

1 The problem

2 Theoretical analysis

3 Benchmarks

Conclusion

- Reshuffling the data during hyperparameter optimization can improve the generalization error.
- The effect depends on the signal-to-noise ratio and the correlation of losses.
- Effects are especially large if validation sets are small (hold-out).
- Next step: Design algorithms exploiting this phenomenon.

Conclusion

- Reshuffling the data during hyperparameter optimization can improve the generalization error.
- The effect depends on the signal-to-noise ratio and the correlation of losses.
- Effects are especially large if validation sets are small (hold-out).
- Next step: Design algorithms exploiting this phenomenon.

Nagler, Schneider, Bischl, Feurer. *Reshuffling resampling splits can improve generalization of hyperparameter optimization.* (NeurIPS '24)

Common resampling strategies

- 1. (holdout) Let M = 1 and $\mathcal{I}_{1,j} = \mathcal{I}_1$ for all j = 1, ..., J, and some size- $\lceil \alpha n \rceil$ index set \mathcal{I}_1 .
- (reshuffled holdout) Let M = 1 and I_{1,1},..., I_{1,J} be independently drawn from the uniform distribution over all size-[αn] subsets from {1,...,n}.
- 3. (*M*-fold CV) Let $\alpha = 1/M$ and $\mathcal{I}_1, \ldots, \mathcal{I}_M$ be a disjoint partition of $\{1, \ldots, n\}$, and $\mathcal{I}_{m,j} = \mathcal{I}_m$ for all $j = 1, \ldots, J$.
- 4. (reshuffled *M*-fold CV) Let $\alpha = 1/M$ and $(\mathcal{I}_{1,j}, \ldots, \mathcal{I}_{M,j}), j = 1, \ldots, J$, be independently drawn from the uniform distribution over disjoint partitions of $\{1, \ldots, n\}$.
- 5. (*M*-fold holdout) Let $\mathcal{I}_m, m = 1, ..., M$, be independently drawn from the uniform distribution over size- $\lceil \alpha n \rceil$ subsets of $\{1, ..., n\}$ and set $\mathcal{I}_{m,j} = \mathcal{I}_m$ for all m = 1, ..., M, j = 1, ..., J.
- (reshuffled *M*-fold holdout) Let *I*_{m,j}, m = 1,..., M, j = 1,..., J, be independently drawn from the uniform distribution over size-[αn] subsets of {1,...,n}.