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Hyperparameter Optimization in ML

® Goal: Fit a model to data that predicts new observations well.

® An algorithm g with hyperparameter A € A maps a data set D to a
model h = gx(D) € H.

® Examples for hyperparameter \:

Penalty parameter in Lasso regression.
Depth and size of a tree ensemble.
Width and depth of neural network.

® Hyperparameter optimization aims to find a A* minimizing the
expected generalization error:

A" =argminp(A),  where  p(X) = E[{(Z, gx(D))],

where ¢(Z, h) denotes the loss of model h on a new observation Z.



The problem
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a stupid

question’.y
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The problem

® Standard approach:

1. Split data D into training and
validation set D = (T, V).

Maylé;[\\ 3. Evaluate models on V.
astupid | ) o
queston? /4. Choose A; with best validation

— loss.

® Why don't we reshuffle the data
between evaluations of Ay, ..., A7

2. Train models gx,(7),...,&x,(7T).
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The problem

/" Sounds like a
N terrible idea
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The problem

We ran some
experiments...

/" Sounds like a

\
N

terrible idea
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The experiments
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Optimizer — Random Search —— HEBO —— SMAC3 Reshuffling — FALSE ---- TRUE
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Agenda

Theoretical analysis
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Mathematical framework

® Dataset D = {Z;} ; of i.i.d. random variables from distribution P,
where Z; = (X;, Y;) in the supervised setting.

® A finite set A = {\1,...,A;} € R? of HPCs to be evaluated.
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Mathematical framework

® Dataset D = {Z;} ; of i.i.d. random variables from distribution P,
where Z; = (X;, Y;) in the supervised setting.

® A finite set A = {\1,...,A;} € R? of HPCs to be evaluated.

® To estimate the generalization error, construct a resampling:

Draw M sets 7, j,...,Im; C {1,..., n} of validation indices
with nyaiiq = [an] instances.

Validation and training sets Vi ; = {Z}icz,,,
Tmj =A{Zi}igz,,,

® Define M-fold validation Ioss

j MZL 7J7g)\ ))7

1
Z E(Z,’, g)\j (Tm,j))7
Nyalid .

i€Lm,;

where  L(Vmj, gx,(Tmj)) =



Mathematical framework

® Recall we want to minimize pu(X) = E[¢(Z, gx(T))]-

® Since p is unknown, take

~

A = argmin fi(A),

~

hoping (A) will be small.
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Mathematical framework

® Recall we want to minimize pu(X) = E[¢(Z, gx(T))]-

® Since p is unknown, take

~

A = argmin i(A),

~

hoping () will be small.
® Typically, same splits for each HPC: Z,, ; = Z, for all j and m.

® We analyze the effect of reshuffling train-validation splits (i.e.,
T j # Iy for j #J').

1. How does reshuffling affect the validation loss surface fi(\)?

~

2. How does this affect the generalization error p(\)?



Effect on the validation loss surface

Theorem

Under regularity conditions,

Vi ((A) = pA))i, =4 N(0, ),

where
i = 7iimK (A, ),
1 n M M
Tij,M = HMT;O VRa2 Z Z Z Pr(s € Zim,i N Zm ),
s=1 m=1m'=1
and

K(A,‘, AJ) = n|i>moo Cov[Zn(Z’, A,‘), Z,,(Z’, )\j)],
ln(z,X) = E[((z,8x(T))] = E[((Z, gx(T))].
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Effect on the validation loss surface

V() = 1)), =g N(0,D), Ty = 71 mK(Ai, A))-

Most common examples

. 'M _ e ) i j
Tij,M = . .
! 202, i #]j.
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Effect on the validation loss surface

V() = 1)), =g N(0,D), Ty = 71 mK(Ai, A))-

Most common examples

o°, i=j
Tij,M = , .
/ 202, i #j. ’

Method o? 72

holdout (HO) 1/a 1

reshuffled HO 1l/a o

M-fold CV 1 1

reshuffled M-fold CV 1 1

M-fold HO 1+(1-a)/Ma 1

reshuffled M-fold HO 1+ (1—«a)/Ma 1/(1+ (1 —«a)/Ma)
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Effect on the validation loss surface

V(i) = pA))i, 2a N(0,5),  Tij = 7ijmK (A, \)).

Takeaways

® Reshuffling ...

> has no effect on the variance of individual validation losses,

> decreases the correlation between validation losses of distinct A.

e Distant A # X are only weakly correlated anyway.

® No effect on M-fold CV (information in data used exhaustively)
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Effect on generalization error

® To simplify the analysis, we work in the limit regime.
® Let €(A) be a zero-mean Gaussian process and

K(AA)  ifAa=X,

) = () + ). Cov(e(x),e(X))—{TzK(A X) ele

with 0 < g2 < Var[e(A)] < 02 < oo for all X € A
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Effect on generalization error

® To simplify the analysis, we work in the limit regime.

® Let €(A) be a zero-mean Gaussian process and

_ KOWA)  ifA=N
AV = 1) + (), Cou(e(A). e(N)) = { YN s
with 0 < g2 < Var[e(A)] < 02 < oo for all X € A

® Regret analysis: compare

> expected loss ,u(j\) of empirically optimized by

> best achievable expected loss pi(A*).

)
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Effect on generalization error

E[1(X) — p(A")] < oVd[8 + B(r) — A(7)].
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Effect on generalization error

E[u(X) — u(X")] < oVd[8 + B(r) — A(7)].

* B(7)
> quantifies how likely it is to pick a bad X because of bad luck

> more likely when ¢ is weakly correlated = decreasing in 7.
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Effect on generalization error

E[u(X) — u(X")] < oVd[8 + B(r) — A(7)].

* B(7)
> quantifies how likely it is to pick a bad X because of bad luck
> more likely when ¢ is weakly correlated = decreasing in 7.

° A7)
> quantifies how likely it is to pick a good p by luck

> more likely when € is weakly correlated = decreasing in 7.
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Effect on generalization error
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Proof idea

* We want to bound the probability that z(X) — z(A*) is large.

® Define the set of 'good’ hyperparameters

As = (N: u(Ay) — u(A") < 6},
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Proof idea

* We want to bound the probability that z(X) — z(A*) is large.
® Define the set of 'good’ hyperparameters
As = (s u(A) — u(x) < 8}
® [t holds
Pr (1(R) = u(A") > 6)

= Pr( min 7i(A) < min zi(A
r(@ﬂﬂ() Qnu(o

< Pr (min e(A) < j) + Pr( min €(A) > >

A¢As
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Proof idea

* We want to bound the probability that z(X) — z(A*) is large.

Define the set of ‘good’ hyperparameters

As = (N: u(Ay) — u(A") < 6},

It holds
Pr (1(R) = u(A") > 6)

= Pr( min 7i(A) < min zi(A
r(;T;IAnSM() Jmin i( )>

< Pr (min «(A) < i) + Pr( min e(A) > 5)

AgAs AEN;5 2 4

Use Gaussian (anti-)concentration inequalities to bound two terms.
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Effect on generalization error

Theorem
Elu(X) — u(X*)] < oVd[8 + B(r) — A(7)].

where

B(r) = 48 [\/1 — 72\/log J + r\/m] :
A(T) = V1—12(a /o), |log (2,:—772>+
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Effect on generalization error

Theorem
Efu(X) — (X)) < ov/d[8 + B(r) — A(7)].
where
B(r) =48 [\/ 1—72/logd + 71+ Iog(3n)+} ;
A7) = V1 —12(a/0), |log (2,:—"2>+

e Correlation constant k =  sup |K(A,A) = KA X))
It KOG X = N2

® Grid density n: minimal number s.t. any n-ball in {||A]] < 1}
contains at least one element of A.

A) — p(A*
® Curvature around the minimum: m = sup M
aen A=A
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Effect on generalization error

2
. . . m
Signal-to-noise ratio p = mr

o

Two regimes

® p>2e:

° p < 2e:
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Effect on generalization error

2
. . . m
Signal-to-noise ratio p = mr

o

Two regimes

® p>2e:

> A(7) = 0 and reshuffling cannot lead to an improvement of the
bound.

> Signal is much stronger than the noise, the HPO problem is so
easy that reshuffling will not help.

® p< 2e
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Effect on generalization error

2
. . . m
Signal-to-noise ratio p = mr
o

Two regimes

® p>2e:

> A(7) = 0 and reshuffling cannot lead to an improvement of the
bound.

> Signal is much stronger than the noise, the HPO problem is so
easy that reshuffling will not help.

® p< 2e

> A(7) and B(7) enter with opposing signs.

> If € weakly correlated, gains in A(7) may outweigh loss in B(7).
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Effect on generalization

error: simulations
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Setup

¢ Datasets: 10 datasets for binary classification from OpenML (<100
features, 10,000-1,000,000 observations).

Subsampled sets of 500, 1000, 5000 points.

ML algorithms: CatBoost, XGBoost, Elastic Net, neural network.

HPO strategies:
Random search (J = 500)

Bayesian optimization with HEBO or SMAC3 (J = 250).

Test performance evaluated by re-training on combined
train-validation sets, then testing out-of-sample (10 replications)
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Benchmarking results: random search

Mean Test Improvement
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Figure: Average improvement (compared to standard 5-fold CV) with respect
to test performance (ROC AUC) for increasing n.
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Benchmarking results: Bayesian optimization

Mean Test Improvement

500 1000 5000

1 50 100 150 200 250 1 50 100 150 200 250 1 50 100 150
No. HPC Evaluations

Optimizer — Random Search —— HEBO —— SMAC3 Reshuffling — FALSE ---- TRUE

Figure: Average improvement (compared to random search/holdout) with
respect to test performance (ROC AUC) for different n.
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Conclusion

® Reshuffling the data during hyperparameter optimization can
improve the generalization error.

® The effect depends on the signal-to-noise ratio and the correlation of
losses.

® Effects are especially large if validation sets are small (hold-out).

® Next step: Design algorithms exploiting this phenomenon.
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Conclusion

® Reshuffling the data during hyperparameter optimization can
improve the generalization error.

® The effect depends on the signal-to-noise ratio and the correlation of
losses.

® Effects are especially large if validation sets are small (hold-out).

® Next step: Design algorithms exploiting this phenomenon.

Nagler, Schneider, Bischl, Feurer. Reshuffling resampling splits can
improve generalization of hyperparameter optimization. (NeurlPS '24)
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Common resampling strategies

1.

(holdout) Let M =1and Z; ; =Z; for all j=1,...,J, and some
size-[an] index set 7;.

(reshuffled holdout) Let M =1 and Z; 1,...,7Z;,; be independently
drawn from the uniform distribution over all size-[an] subsets from

{1,...,n}.

(M-fold CV) Let « = 1/M and 7y, ...,Zy be a disjoint partition of
{1,...,n},and Ipp; =T, forall j=1,.... J.

(reshuffled M-fold CV) Let « =1/M and
(Z1j,---,ZImy),j=1,...,d, be independently drawn from the
uniform distribution over disjoint partitions of {1,..., n}.

(M-fold holdout) Let Z,,, m=1,..., M, be independently drawn
from the uniform distribution over size-[an]| subsets of {1,...,n}
andset Zp,j =Zp forallm=1,... . M,j=1,...,J.

(reshuffled M-fold holdout) Let Z,, j,m=1,... . M,j=1,...,J,
be independently drawn from the uniform distribution over size-[an]
subsets of {1,...,n}.
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