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Hyperparameter Optimization in ML

• Goal: Fit a model to data that predicts new observations well.

• An algorithm g with hyperparameter λ ∈ Λ maps a data set D to a
model h = gλ(D) ∈ H.

• Examples for hyperparameter λ:

I Penalty parameter in Lasso regression.

I Depth and size of a tree ensemble.

I Width and depth of neural network.

• Hyperparameter optimization aims to find a λ∗ minimizing the
expected generalization error:

λ∗ = argmin
λ∈Λ

µ(λ), where µ(λ) = E[`(Z , gλ(D))],

where `(Z , h) denotes the loss of model h on a new observation Z .
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The problem

• Standard approach:

1. Split data D into training and
validation set D = (T ,V).

2. Train models gλ1(T ), . . . , gλJ (T ).

3. Evaluate models on V.

4. Choose λj with best validation
loss.

• Why don’t we reshuffle the data
between evaluations of λ1, . . . ,λJ?
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The experiments
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Agenda

1 The problem

2 Theoretical analysis

3 Benchmarks

4 Conclusion
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Mathematical framework

• Dataset D = {Zi}n
i=1 of i.i.d. random variables from distribution P ,

where Zi = (Xi ,Yi) in the supervised setting.

• A finite set Λ = {λ1, . . . ,λJ} ⊆ Rd of HPCs to be evaluated.

• To estimate the generalization error, construct a resampling:
I Draw M sets I1,j , . . . , IM,j ⊂ {1, . . . , n} of validation indices

with nvalid = dαne instances.

I Validation and training sets Vm,j = {Zi}i∈Im,j ,
Tm,j = {Zi}i /∈Im,j .

• Define M-fold validation loss

µ̂(λj) =
1
M

M∑
m=1

L(Vm,j , gλj (Tm,j)),

where L(Vm,j , gλj (Tm,j)) =
1

nvalid

∑
i∈Im,j

`(Zi , gλj (Tm,j)),
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Mathematical framework

• Recall we want to minimize µ(λ) = E[`(Z , gλ(T ))].

• Since µ is unknown, take

λ̂ = argmin
λ∈Λ

µ̂(λ),

hoping µ(λ̂) will be small.

• Typically, same splits for each HPC: Im,j = Im for all j and m.

• We analyze the effect of reshuffling train-validation splits (i.e.,
Im,j 6= Im,j′ for j 6= j ′).

1. How does reshuffling affect the validation loss surface µ̂(λ)?

2. How does this affect the generalization error µ(λ̂)?
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Effect on the validation loss surface

Theorem
Under regularity conditions,

√
n (µ̂(λj)− µ(λj))

J
j=1 →d N (0,Σ),

where

Σi,j = τi,j,MK(λi ,λj),

τi,j,M = lim
n→∞

1
nM2α2

n∑
s=1

M∑
m=1

M∑
m′=1

Pr(s ∈ Im,i ∩ Im′,j),

and

K(λi ,λj) = lim
n→∞

Cov[¯̀n(Z ′,λi), ¯̀n(Z ′,λj)],

¯̀n(z,λ) = E[`(z, gλ(T ))]− E[`(Z , gλ(T ))].
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Effect on the validation loss surface

√
n (µ̂(λj)− µ(λj))

J
j=1 →d N (0,Σ), Σi,j = τi,j,MK(λi ,λj).

Most common examples

τi,j,M =

{
σ2, i = j
τ 2σ2, i 6= j.

,

Method σ2 τ 2

holdout (HO) 1/α 1
reshuffled HO 1/α α
M-fold CV 1 1
reshuffled M-fold CV 1 1
M-fold HO 1 + (1 − α)/Mα 1
reshuffled M-fold HO 1 + (1 − α)/Mα 1/(1 + (1 − α)/Mα)
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Effect on the validation loss surface

√
n (µ̂(λj)− µ(λj))

J
j=1 →d N (0,Σ), Σi,j = τi,j,MK(λi ,λj).

Takeaways

• Reshuffling …

I has no effect on the variance of individual validation losses,

I decreases the correlation between validation losses of distinct λ.

• Distant λ 6= λ′ are only weakly correlated anyway.

• No effect on M-fold CV (information in data used exhaustively)
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Effect on generalization error

• To simplify the analysis, we work in the limit regime.

• Let ε(λ) be a zero-mean Gaussian process and

µ̂(λj) = µ(λj) + ε(λj), Cov(ε(λ), ε(λ′)) =

{
K(λ,λ) if λ = λ′,

τ 2K(λ,λ′) else,

with 0 < σ2 ≤ Var[ε(λ)] ≤ σ2 < ∞ for all λ ∈ Λ.

• Regret analysis: compare

I expected loss µ(λ̂) of empirically optimized λ̂,

I best achievable expected loss µ(λ∗).
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Effect on generalization error

Theorem

E[µ(λ̂)− µ(λ∗)] ≤ σ
√

d[8 + B(τ)− A(τ)].

• B(τ)

I quantifies how likely it is to pick a bad λ̂ because of bad luck

I more likely when ε is weakly correlated ⇒ decreasing in τ .

• A(τ)

I quantifies how likely it is to pick a good λ̂ by luck

I more likely when ε is weakly correlated ⇒ decreasing in τ .
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Effect on generalization error
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Proof idea

• We want to bound the probability that µ(λ̂)− µ(λ∗) is large.

• Define the set of ‘good’ hyperparameters

Λδ = {λj : µ(λj)− µ(λ∗) ≤ δ}.

• It holds

Pr
(
µ(λ̂)− µ(λ∗) > δ

)
= Pr

(
min
λ/∈Λδ

µ̂(λ) < min
λ∈Λδ

µ̂(λ)

)
≤ Pr

(
min
λ/∈Λδ

ε(λ) < −δ

4

)
+ Pr

(
min

λ∈Λδ/2
ε(λ) >

δ

4

)
• Use Gaussian (anti-)concentration inequalities to bound two terms.
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Effect on generalization error

Theorem

E[µ(λ̂)− µ(λ∗)] ≤ σ
√

d[8 + B(τ)− A(τ)].

where

B(τ) = 48
[√

1 − τ 2
√

log J + τ
√

1 + log(3κ)+
]
,

A(τ) =
√

1 − τ 2(σ/σ)

√
log

(
σ

2mη2

)
+

.

• Correlation constant κ = sup
‖λ‖,‖λ′‖≤1

|K(λ,λ)− K(λ,λ′)|
K(λ,λ)‖λ− λ′‖2 .

• Grid density η: minimal number s.t. any η-ball in {‖λ‖ ≤ 1}
contains at least one element of Λ.

• Curvature around the minimum: m = sup
λ∈Λ

|µ(λ)− µ(λ∗)|
‖λ− λ∗‖2 .
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Effect on generalization error

Signal-to-noise ratio ρ =
mη2

σ

Two regimes

• ρ ≥ 2e:

I A(τ) = 0 and reshuffling cannot lead to an improvement of the
bound.

I Signal is much stronger than the noise, the HPO problem is so
easy that reshuffling will not help.

• ρ < 2e:

I A(τ) and B(τ) enter with opposing signs.

I If ε weakly correlated, gains in A(τ) may outweigh loss in B(τ).
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Effect on generalization error: simulations
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Setup

• Datasets: 10 datasets for binary classification from OpenML (<100
features, 10,000–1,000,000 observations).

I Subsampled sets of 500, 1000, 5000 points.

• ML algorithms: CatBoost, XGBoost, Elastic Net, neural network.

• HPO strategies:

I Random search (J = 500)

I Bayesian optimization with HEBO or SMAC3 (J = 250).

• Test performance evaluated by re-training on combined
train-validation sets, then testing out-of-sample (10 replications)
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Benchmarking results: random search
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Figure: Average improvement (compared to standard 5-fold CV) with respect
to test performance (ROC AUC) for increasing n.
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Benchmarking results: Bayesian optimization
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Figure: Average improvement (compared to random search/holdout) with
respect to test performance (ROC AUC) for different n.
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Conclusion

• Reshuffling the data during hyperparameter optimization can
improve the generalization error.

• The effect depends on the signal-to-noise ratio and the correlation of
losses.

• Effects are especially large if validation sets are small (hold-out).

• Next step: Design algorithms exploiting this phenomenon.

Nagler, Schneider, Bischl, Feurer. Reshuffling resampling splits can
improve generalization of hyperparameter optimization. (NeurIPS ’24)
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Common resampling strategies

1. (holdout) Let M = 1 and I1,j = I1 for all j = 1, . . . , J , and some
size-dαne index set I1.

2. (reshuffled holdout) Let M = 1 and I1,1, . . . , I1,J be independently
drawn from the uniform distribution over all size-dαne subsets from
{1, . . . , n}.

3. (M-fold CV) Let α = 1/M and I1, . . . , IM be a disjoint partition of
{1, . . . , n}, and Im,j = Im for all j = 1, . . . , J .

4. (reshuffled M-fold CV) Let α = 1/M and
(I1,j , . . . , IM,j), j = 1, . . . , J , be independently drawn from the
uniform distribution over disjoint partitions of {1, . . . , n}.

5. (M-fold holdout) Let Im,m = 1, . . . ,M, be independently drawn
from the uniform distribution over size-dαne subsets of {1, . . . , n}
and set Im,j = Im for all m = 1, . . . ,M, j = 1, . . . , J .

6. (reshuffled M-fold holdout) Let Im,j ,m = 1, . . . ,M, j = 1, . . . , J ,
be independently drawn from the uniform distribution over size-dαne
subsets of {1, . . . , n}. 25 / 25
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