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Reminder: Game Theory and

Optimal Stopping



Two player normal form games

Player 1 2

Strategy sets S1 S2

Strategies s1 ∈ S1 s2 ∈ S2

Rewards J1 : S1 × S2 → R J2 : S1 × S2 → R

Goal maximize J1 maximize J2

over S1 over S2

(s∗1 , s
∗
2 ) ∈ S1 × S2 is called Nash equilibrium, if

J1(s∗1 , s
∗
2 ) ⩾ J1(s1, s

∗
2 )

J2(s∗1 , s
∗
2 ) ⩾ J2(s∗1 , s2)

for all (s1, s2) ∈ S1 × S2.
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Example: Odd vs. Even

• S1:= S2 := {Odd, Even}

• J1,J2 given by ...

s1/s2 Odd Even

Odd (1,-1 ) (-1,1)

Even (-1,1) (1,-1)

• No Nash equilibrium
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Randomized equilibria

• Enlarge the spaces of strategies from e.g. S1 = S2 = {Odd, Even} to the space

M1({Odd, Even}) := {P : P is a probability measure on {Odd, Even}}.

• Extend J1, J2 to M1({Odd, Even})2 via

J i (P1,P2) :=

∫ ∫
J i (s1, s2)P1(ds1)P2(ds2), i = 1, 2.

• (P∗,P∗) ∈ M1({Odd, Even})2, P∗(Odd) = P∗(Even) = 1
2 is a randomized Nash

equilibrium in the Odd vs. Even game.
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Randomization

1st Observation

Randomization is necessary for general existence of Nash equilibria.
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Markovian Optimal Stopping Problems

X nice Markov processes,

V (x) = sup
τ

Ex(e
−rτg(Xτ))

Optimal stopping time

Under weak assumptions, the following first exit time is optimal:

τ∗ = inf{t : Xt ̸∈ C }, C = {x : V (x) > g(x)}

• allows for explicit solutions (PDE-formulations,...)

• time-consistent optimizer (subgame perfection)
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Markovian optimal stopping

2nd Observation

For both practical and interpretative purposes, one should look at Markovian

stopping times.
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Dynkin games



Example: Dynkin games

• X = (Xt)t∈[0,∞) a diffusion on an interval I .

• f1, f2, g1, g2 continuous

J1 : I × T2 → R,

(x , τ1, τ2) 7→ Ex [1τ1⩽τ2e
−rτ1g1(Xτ1) + 1τ1>τ2e

−rτ2f1(Xτ2)],

J2 : I × T2 → R,

(x , τ1, τ2) 7→ Ex [1τ2⩽τ1e
−rτ2g2(Xτ2) + 1τ2>τ1e

−rτ1f2(Xτ1)].

Important special cases:

• g1 = −f2, g2 = −f1: zero-sum

• g1 ⩽ f1, g2 ⩽ f2: war of attrition

• ...
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Equilibria in Dynkin games

There are two types of existence results for equilibria

structural restrictive rather

assumptions general

equilibrium first exit randomized stop.

strategy time time

Subgame perfect Yes No

(Markovian)
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Markovian Stopping Games

Want a class of stopping times that

• is large enough for existence of equilibria

• is manageable and interpretable

• respects Markovian framework (subgame perfection)
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Randomized Markovian stopping

times



Stopping with expectation constraint, Pre-commitment

V (x) = sup
τ

Ex(g(Xτ)), sj.t. Ex(τ) ⩽ T

• S. Ankirchner, M. Klein et al (2019, 2019), E. Bayraktar et al (2020, 2022)

• Xτ∗ just takes three values

• One possibility: a ⩽ c ⩽ b, E ∼ Exp(1) independent from X :

τ[a,b],λδc := inf{t ⩾ 0 : Xt ̸∈ [a, b] or λLct ⩾ E }
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Stopping with expectation constraint, time-consistent (C., Klein,Schultz, AMO,

2025)

sup
τ

Ex(g(Xτ)), sj.t. Ex(τ) ⩽ T for all x

• Equilibrium stopping time (in the sense of Strotz)?

• R ⊆ C , E ∼ Exp(1) independent of X :

τC , 1T LebR := inf

{
t ⩾ 0 : Xt ̸∈ C or

1

T

∫ t
0
1Xs∈Rds ⩾ E

}
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Non-standard stopping problems 1, time-consistent (C., Lindensjö, SPA, 2020)

sup
τ

Ex(f (Xτ)) + g(Ex(h(Xτ))),

• Equilibrium stopping time (in the sense of Strotz)?

• C , ψ function, E ∼ Exp(1) independent of X :

τC ,ψ(x)dx := inf

{
t ⩾ 0 : Xt ̸∈ C or

∫ t
0
ψ(Xs)ds ⩾ E

}
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Non-standard stopping problems 2, time-consistent (Bodnariu, C., Lindensjö,

SICON, 2024)

sup
τ

Ex

(
h(τ)g(Xτ) +

∫τ
0
h(s)f (Xs)ds

)
,

• Equilibrium stopping time (in the sense of Strotz)?

• C , ψ function, E ∼ Exp(1) independent of X :

inf

{
t ⩾ 0 : Xt ̸∈ C or

∫ t
0
ψ(Xs)ds +

∑
i

diL
xi
t ⩾ E

}
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Dynkin games with heterogeneous beliefs (Ekström, Glover, Leniec, JAP, 2017)

• zero-sum Dynkin games between two players who disagree about the underlying

model

• E ∼ Exp(1) independent of X :

τR,λδc := inf{t ⩾ 0 : λLct ⩾ E }
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Summary

• general existence theorems only in general randomised stopping times: too large,

no subgame-perfection

• equilibria in first exit times just in special problem classes

• In continuous time, stopping times of the form

inf

{
t ⩾ 0 : Xt ̸∈ C or

∫ t
0
ψ(Xs)ds +

∑
i

diL
xi
t ⩾ E

}

in some examples via guess-and-verify.
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Randomized Markovian times

Let C ⊂ I open, λ ∈ RM(C ) := {Radon-measures on C }, E ∼ Exp(1) independent of X

• continuous additive functional

AC ,λ
t (ω) :=

∫
C
Lyt (ω)λ(dy)

• randomized Markovian time

τC ,λ := inf{t ⩾ 0 : Xt ̸∈ C or Aλt ⩾ E }.

• space of randomized Markovian times

R := {τC ,λ : C open, λ ∈ RM(C )}
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Markovian?

• For τC ,λ ∈ R we set

θτB ◦ τ = inf{t ⩾ 0 : θτB ◦ AC ,λ
t ⩾ E ′}

with E ′ ∼ Exp(1) independent from X ,E .

• This yields a strong Markov property for τC ,λ:

1τC ,λ⩾τBτ
C ,λ d

= 1τC ,λ⩾τB (θτB ◦ τC ,λ + τB)
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Equilibria in Dynkin games

Can we get the best of both worlds?

structural restrictive fairly fairly

assumptions general general

equilibrium first exit randomized measure on T

strategy time Markovian time

Subgame perfect Yes Yes No

(Markovian)

R : set of all τC ,λ := inf{t ⩾ 0 : Xt ̸∈ C or Aλt ⩾ E }.
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Randomized Markovian stopping times suitable class?

Main question

In general Markovian stopping games

• do equilibria exist

• can equilibria be constructed explicitly

in the class of randomized Markovian stopping times?
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Construction: zero-sum



Zero-Sum

J(x ; τ1, τ2) := Ex

(
e−r(τ1∧τ2) (f (Xτ1)I{τ1 < τ2}+ g(Xτ2)I{τ1 > τ2}+ h(Xτ1)I{τ1 = τ2})

)
General Result under ordering condition (Ekström, Peskir, 2008, 2009...)

If f ⩽ h ⩽ g , an equilibrium can be found in the class of first exit times using the

semiharmonic characterization.
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Zero-Sum

General Result (C., Lindensjö, 2024)

Without any ordering condition, in the zero sum game global Markovian randomized

ϵ-Nash equilibria can be constructed for each ϵ > 0.
22/28



Existence of Markovian equilibria in

war-of-attrition-games



Fixed point theorems

Assumptions in your typical fixed point theorem:

• Compact (pre-)image.

• Some continuity (a closed graph) of

the mapping.

• Convexity (or a variant) and

non-emptyness of the image sets of

the mapping.

• Solving a fixed point problem means to

find a topology with these properties.

• R has no canonical topology.
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Topologies on R

We embed R into another space via ι and equip it with the pullback topology.

• ι1 : R → {f : f is F-measurable}, τ 7→ τ.

• ι2 : R → M(I ) := {µ|µ measure on I },

τC ,λ 7→ λC , λC (A) :=

λ(A), if A ⊂ C ,∞, if A \ C ̸= ∅,
A ∈ B(U).

• ιx : R → M1([0,∞]× I ) := {µ|µ probability measure on [0,∞]× I }

τC ,λ 7→ P
(τC ,λ,X

τC ,λ)
x .
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Topologies on R cont’d

Properties Tι1 Tι2 Tιx

Space measurable measures probability

functions measures

Compactness unlikely only for yes, with

finite I tightness

Φ continuity more likely under some under some

conditions conditions

Convexity ? yes In some sense...
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Markovian Dynkin games, diffusion

• J1(x , τ1, τ2) = Ex [1τ1⩽τ2e
−rτ1g1(Xτ1) + 1τ1>τ2e

−rτ2f1(Xτ2)]

Class of Markovian stopping times R given by C , λ :

τC ,λ := inf{t ⩾ 0 : AC ,λ
t ⩾ E },E ∼ Exp(1).

Existence Theorem (C., Schultz, 2024, see also Decamps, Gensbittel, Mariotti)

Assume g1 ⩽ f1, g2 ⩽ f2, then (under weak assumptions) there exists a Nash

equilibrium (τC
(1),λ(1) , τC

(2),λ(2)) in R.
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Main ideas of the proofs

For compact state space I :

1. Chose finite In ⊂ I such that
⋃

n In is dense in I .

2. Consider the auxiliary game where stopping is only allowed in In.

3. Use Kakutani’s theorem with the topology Tι2 to find equilibria in the auxiliary

games for each n.

4. Use compactness of×x∈Q Tιx to find a limit point of the sequence of the

equilibria of the auxiliary games.

5. By continuity of J1, J2 the limit point is an equilibrium of the original game.
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Conclusion



Summary

• Randomized Markovian stopping times R suitable for stopping games

• Can be used for direct constructions

• Topology on R crucial for general existence

• Recent application of R in Diffusion Generative Models (ML)

28/28



Summary

• Randomized Markovian stopping times R suitable for stopping games

• Can be used for direct constructions

• Topology on R crucial for general existence

• Recent application of R in Diffusion Generative Models (ML)

28/28


	Reminder: Game Theory and Optimal Stopping
	Dynkin games
	Randomized Markovian stopping times
	Construction: zero-sum
	Existence of Markovian equilibria in war-of-attrition-games
	Conclusion

