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Reminder: Game Theory and
Optimal Stopping



Two player normal form games

Player 1 2
Strategy sets g 82
Strategies s € 81 s € 82
Rewards J1:8'x8 SR JS:8'x8 =R
Goal maximize J? maximize J?
over 8t over 82

1/28



Two player normal form games

Player 1 2
Strategy sets g 82
Strategies s € 81 s € 82
Rewards J1:8'x8 SR JS:8'x8 =R
Goal maximize J? maximize J?
over 8t over 82

(sf,s5) € 8! x 82 is called Nash equilibrium, if
Jl(sf,sj) > Jl(sl,sg)
S(stis3) = (st 92)
for all (s1,5) € 8t x 8.
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Example: Odd vs. Even

o 8h:= 8% :={0dd, Even}
o J1 )2 given by ...
s1/s2 ‘ Odd Even
Odd | (1,-1) (-1,1)
Even | (-1,1) (1,-1)
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Example: Odd vs. Even

o 8h:= 8% :={0dd, Even}
o J1 )2 given by ...
s1/s2 ‘ Odd Even
Odd | (1,-1) (-1,1)
Even | (-1,1) (1,-1)

e No Nash equilibrium
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Randomized equilibria

e Enlarge the spaces of strategies from e.g. 8! = 82 = {Odd, Even} to the space

M*({Odd, Even}) :=={P: P is a probability measure on {Odd, Even}}.
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Randomized equilibria

e Enlarge the spaces of strategies from e.g. 8! = 82 = {Odd, Even} to the space

M*({Odd, Even}) :=={P: P is a probability measure on {Odd, Even}}.

e Extend J!, J? to M*({Odd, Even})? via
Ji(Py, Py) = ”J"(sl, s)P1(ds;)Pa(dsy), i=1,2.

e (P*, P*) e M'({Odd, Even})?, P*(Odd) = P*(Even) :% is a randomized Nash
equilibrium in the Odd vs. Even game.
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1st Observation

Randomization is necessary for general existence of Nash equilibria.
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Markovian Optimal Stopping Problems

X nice Markov processes,

V(x) = sup Ex(e”""g(Xx))
T
Optimal stopping time

Under weak assumptions, the following first exit time is optimal:

T =inf{t: X; € C}, C={x:V(x)>g(x)}
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Markovian Optimal Stopping Problems

X nice Markov processes,

Vix) = S Ex(e”"g(Xz))

Optimal stopping time

Under weak assumptions, the following first exit time is optimal:

T =inf{t: X; € C}, C={x:V(x)>g(x)}

e allows for explicit solutions (PDE-formulations,...)

e time-consistent optimizer (subgame perfection)
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Markovian optimal stopping

2nd Observation
For both practical and interpretative purposes, one should look at Markovian
stopping times.
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Dynkin games



Example: Dynkin games

e X = (Xt)te[o,00) 2 diffusion on an interval /.
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Example: Dynkin games

e X = (Xt)te[o,00) 2 diffusion on an interval /.

e fi,f, g1, g» continuous
I xT? SR,
(%, 71, T2) = Exllle <y ™81 (Xey) + Dy sy "2 (X, )],
Sl xT?2 SR,

(Xr T]_, TZ) — IEX[]]-ngTleirngQ(XTQ) + ]]-T2>TleirT1f2(XT1 )]
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Example: Dynkin games

o X = (Xt)te[0,00) @ diffusion on an interval /.
e fi,f, g1, g» continuous
I xT? SR,
(71, T2) = Exlloycr, e ™81 (Xe,) + Ty sy 2R (X, ),
Sl xT?2 SR,

(Xr T]_, TZ) — IEX[]]-ngTleirngQ(XTQ) + ]]-T2>TleirT1f2(XT1 )]

Important special cases:

e g1 = —f, go=—f: zero-sum
e gy < f1, g < fr: war of attrition
T 7/28



Example: Dynkin games

e X = (Xt)te[o,00) 2 diffusion on an interval /.

e fi,f, g1, 4> continuous, x € /
JT? SR,
(T1,2) = Ex[l, <6 Mg (Xey) + Loy se” "2 A (X, )],
27?2 SR,
(T2, T2) = Ex[lr,cr e g2 Xe,) + Loysr e MHhA(Xe )L
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Example: Dynkin games

e X = (Xt)te[o,00) 2 diffusion on an interval /.

e fi,f, g1, 4> continuous, x € /
ST SR,
(T1,2) = Ex[l, <6 Mg (Xey) + Loy se” "2 A (X, )],
27?2 SR,

(T]_, T2) — [EX[]sznge rT2g2(XT2) + ]lTQ>T1 e*l’Tl fZ(XT1 )]

(17, 713) is called Nash equilibrium if
St ) = Sx, TS),
J

>

J2(x, 17, 75)

for all (t1,T2) € T2. 8/28



Equilibria in Dynkin games

There are two types of existence results for equilibria

structural restrictive
assumptions

equilibrium first exit  randomized stop.
strategy time time
Subgame perfect No
(Markovian)
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Markovian Stopping Games

Want a class of stopping times that

e is large enough for existence of equilibria
e is manageable and interpretable

e respects Markovian framework (subgame perfection)

10/28



Randomized Markovian stopping
times




Stopping with expectation constraint, Pre-commitment

V(x) =sup Ex(g(Xr)), sjt. Ex(T) < T

e S. Ankirchner, M. Klein et al (2019, 2019), E. Bayraktar et al (2020, 2022)
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e S. Ankirchner, M. Klein et al (2019, 2019), E. Bayraktar et al (2020, 2022)
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Stopping with expectation constraint, Pre-commitment

V(x) =sup Ex(g(Xr)), sjt. Ex(T) < T

e S. Ankirchner, M. Klein et al (2019, 2019), E. Bayraktar et al (2020, 2022)
e X+ just takes three values

e One possibility: a < ¢ < b, E ~ Exp(1) independent from X:

glablAde . inf{t > 0:X; & [a, bl or ALf > E}
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Stopping with expectation constraint, time-consistent (C., Klein,Schultz, AMO,

2025)

sup Ex(g(X:)), sj.t. Ex(t) < T for all x
T

e Equilibrium stopping time (in the sense of Strotz)?
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Stopping with expectation constraint, time-consistent (C., Klein,Schultz, AMO,

2025)

sup Ex(g(X:)), sj.t. Ex(t) < T for all x
T

e Equilibrium stopping time (in the sense of Strotz)?
e RC C, E ~Exp(1) independent of X:

t
TC,%LebR = inf{t >0: X ¢ Cor 71_J 1x.erds > E}
0
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Non-standard stopping problems 1, time-consistent (C., Lindensjo, SPA, 2020)

2 Ex(f(X<)) + g(Ex(h(X:))),

e Equilibrium stopping time (in the sense of Strotz)?
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Non-standard stopping problems 1, time-consistent (C., Lindensjo, SPA, 2020)

2 Ex(f(X<)) + g(Ex(h(X:))),

e Equilibrium stopping time (in the sense of Strotz)?
e C, 1 function, E ~ Exp(1) independent of X:

WV

t
G (x)dx . inf{t >0:X; & Cor J Y(Xs)ds E}
0
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Non-standard stopping problems 2, time-consistent (Bodnariu, C., Lindensjo,

SICON, 2024)

s (hmg(xa + J h(s)f(xs)ds> |

e Equilibrium stopping time (in the sense of Strotz)?

14/28



Non-standard stopping problems 2, time-consistent (Bodnariu, C., Lindensjo,

SICON, 2024)

s (hmg(xa + J h(s)f(xs)ds> |

e Equilibrium stopping time (in the sense of Strotz)?
e C, 1 function, E ~ Exp(1) independent of X:

t
inf{t> 0: X, ¢ C or J Y(Xs)ds+ ) dily > E}
0 i

14/28



Dynkin games with heterogeneous beliefs (Ekstrom, Glover, Leniec, JAP, 2017)

e zero-sum Dynkin games between two players who disagree about the underlying
model

15/28



Dynkin games with heterogeneous beliefs (Ekstrom, Glover, Leniec, JAP, 2017)

e zero-sum Dynkin games between two players who disagree about the underlying
model

e £ ~ Exp(1) independent of X:

A% .—inf{t > 0: ALS > E}
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e general existence theorems only in general randomised stopping times: too large,
no subgame-perfection

e equilibria in first exit times just in special problem classes

e In continuous time, stopping times of the form

t
inf{t >0:X, ¢ Cor J Y(X)ds + Y diLy > E}
0 i

in some examples via guess-and-verify.
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Randomized Markovian times

Let C C I open, A € RM(C) :={Radon-measures on C}, E ~ Exp(1) independent of X
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Randomized Markovian times
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e continuous additive functional
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Randomized Markovian times

Let C C I open, A € RM(C) :={Radon-measures on C}, E ~ Exp(1) independent of X

e continuous additive functional

ACN () = JC L (w)A(dy)

e randomized Markovian time

TN = inf{t > 0: X, ¢ C or Ai‘ > E}

17/28



Randomized Markovian times

Let C C I open, A € RM(C) :={Radon-measures on C}, E ~ Exp(1) independent of X

e continuous additive functional

ACN () = JC L (w)A(dy)

e randomized Markovian time

TN = inf{t > 0: X, ¢ C or Ai‘ > E}

e space of randomized Markovian times
R := {1t : C open, A € RM(C)}
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Markovian?

e For t€* € R we set
O poT=inf{t>0:0.80A" > E’}

with E’ ~ Exp(1) independent from X, E.
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Markovian?

e For t€* € R we set
O poT=inf{t>0:0.80A" > E’}

with E’ ~ Exp(1) independent from X, E.

e This yields a strong Markov property for T¢:

d
]].TC,)\>TBTC'7\ = ]lTC,}\>TB(eTB ott? 4 TB)
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Equilibria in Dynkin games

Can we get the best of both worlds?

structural restrictive

assumptions

equilibrium first exit randomized measure on T
strategy time Markovian time
Subgame perfect No
(Markovian)

R: set of all TN :=inf{t > 0: X, & C or A} > E}.
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Randomized Markovian stopping times suitable class?

Main question

In general Markovian stopping games

e do equilibria exist

e can equilibria be constructed explicitly

in the class of randomized Markovian stopping times?
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Construction: zero-sum




J(x; 71, 12) = Ex (efr(TlATz) (F(Xe)HT1 < T2} + g(Xe, )11 > T2} + h( X )11 = Tz}))

General Result under ordering condition (Ekstrom, Peskir, 2008, 2009...)
If £ < h< g, an equilibrium can be found in the class of first exit times using the
semiharmonic characterization.
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J(x; 71, 12) = Ex (efr(TlATz) (F(Xe)HT1 < T2} + g(Xe, )11 > T2} + h( X )11 = Tz}))

General Result under ordering condition (Ekstrom, Peskir, 2008, 2009...)
If £ < h< g, an equilibrium can be found in the class of first exit times using the
semiharmonic characterization.
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Zero-Sum

By B; B, B By By B, B, Bg By

General Result (C., Lindensjo, 2024)

Without any ordering condition, in the zero sum game global Markovian randomized

e-Nash equilibria can be constructed for each € > 0. p2/28



Existence of Markovian equilibria in
war-of-attrition-games




Fixed point theorems

Assumptions in your typical fixed point theorem:

e Compact (pre-)image.

e Some continuity (a closed graph) of
the mapping.

e Convexity (or a variant) and
non-emptyness of the image sets of

the mapping.

NN
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Fixed point theorems

Assumptions in your typical fixed point theorem:

Compact (pre-)image.

Some continuity (a closed graph) of
the mapping.

Convexity (or a variant) and
non-emptyness of the image sets of
the mapping.

Solving a fixed point problem means to
find a topology with these properties.

R has no canonical topology.

NN
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Topologies on R

We embed R into another space via t and equip it with the pullback topology.

e 11 : R —{f:fis F-measurable}, T +— T.
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Topologies on R

We embed R into another space via t and equip it with the pullback topology.
e 11 : R —{f:fis F-measurable}, T +— T.

e 1r: R — M(/):={ulu measure on I},

AA), ifACC,
€A LAC, AC(a) = M) Ac B(U).
o fA\C+#o
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Topologies on R

We embed R into another space via t and equip it with the pullback topology.

t1: R —{f:fis F-measurable}, T — T.

e 1r: R — M(/):={ulu measure on I},

AA), ifACC,
€A LAC, AC(a) = M) Ac B(U).
o fA\C+#o

o 1R — M0, 00] x /) :={ulu probability measure on [0, co] x I}

<CA Ly P)ETC’}\vXTC,)\ ).
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Topologies on R cont’d

Properties TH T2 FOR
Space measurable  measures probability
functions measures

Compactness unlikely

@ continuity more likely

Convexity ?
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Markovian Dynkin games, diffusion

o Ji(x,T1,T2) =Ex[lr, <o g1 (Xe,) + Ly o6 A (XS]

Class of Markovian stopping times R given by C, A :

¢ = inf{t>0: Atc')‘ > E}, E ~ Exp(1).

Existence Theorem (C., Schultz, 2024, see also Decamps, Gensbittel, Mariotti)
Assume g1 < f1, & < fo, then (under weak assumptions) there exists a Nash

S 1) AQ) 2 A@) .
equilibrium (t¢ A €T AT in R.
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Main ideas of the proofs

For compact state space /:
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games for each n.
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Main ideas of the proofs

For compact state space /:

1. Chose finite I, C I such that |, I, is dense in /.
2. Consider the auxiliary game where stopping is only allowed in /,.

3. Use Kakutani's theorem with the topology ¥'2 to find equilibria in the auxiliary
games for each n.

4. Use compactness of Xxeq T to find a limit point of the sequence of the

equilibria of the auxiliary games.

5. By continuity of J*, J? the limit point is an equilibrium of the original game.

27/28



Conclusion




e Randomized Markovian stopping times R suitable for stopping games
e Can be used for direct constructions

e Topology on R crucial for general existence
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Randomized Markovian stopping times R suitable for stopping games

Can be used for direct constructions

Topology on R crucial for general existence

Recent application of R in Diffusion Generative Models (ML)
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