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Abstract

Probabilistic methods for classifying text form a rich tradition in machine learning and natural
language processing. For many important problems, however, class prediction is uninteresting
because the class is known, and instead the focus shifts to estimating latent quantities related
to the text, such as affect or ideology. We focus on one such problem of interest, estimating
the ideological positions of 55 Irish legislators in the 1991 Dáil confidence vote, a challenge
brought by opposition party leaders against the then-governing Fianna Fáil party in response to
corruption scandals. In this application, we clearly observe support or opposition from the known
positions of party leaders, but have only information from speeches from which to estimate the
relative degree of support from other legislators. To solve this scaling problem and others like
it, we develop a text modeling framework that allows actors to take latent positions on a “gray”
spectrum between “black” and “white” polar opposites. We are able to validate results from this
model by measuring the influences exhibited by individual words, and we are able to quantify
the uncertainty in the scaling estimates by using a sentence-level block bootstrap. Applying our
method to the Dáil debate, we are able to scale the legislators between extreme pro-government
and pro-opposition in a way that reveals nuances in their speeches not captured by their votes or
party affiliations.
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1. Introduction. Text classification, where the goal is to infer a discrete class label from ob-

served text, is a core activity in statistical and machine learning and natural language process-

ing. Instances of this problem include inferring authorship (Mosteller and Wallace, 1963) or genre

(Kessler et al., 1997), detecting deception (Newman, Pennebaker and Berry, 2003), classifying email

as “spam” (Heckerman et al., 1998), or categorizing sentiment (Pang, Lee and Vaithyanathan, 2002).

The huge appeal of the methods developed for these applications is that, from a small training set, it

is possible to classify a large number of unlabelled documents to reasonable accuracy without costly

human intervention.

In many applications, however, classification is an uninteresting goal, since the correct identifica-

tion of the class is obvious and costless. It is fundamentally uninteresting, for example, to attempt

to predict the political party of a speaker or the identity of a Supreme Court justice. Furthermore, in

many social and political settings with observed discrete outcomes, institutions may cause predicted

and observed class membership to diverge in significant ways. In parliamentary democracies where

party discipline is enforced, for instance, voting may follow party lines even if the best predictions

from observable features indicate more heterogeneous outcomes. In such cases, it is trivial to pre-

dict class (a legislator’s vote) from observable covariates (political party). In the presence of these

covariates, the text of a speech is ancillary to the goal of class label prediction.

Even when observing text does not improve prediction performance, it is not the case that text is

uninformative. In legislative debates, the text that legislators generate through floor speeches may

provide a direct opportunity for them to express their contrary and divergent preferences (see for

instance Benoit and Herzog, 2012). With legal briefs, to take another example, it is trivial to classify

opinions as majority or dissenting but using the observed text and other information it is possible

to place the briefs on a spectrum between the two extremes (Clark and Lauderdale, 2010). Simply

attempting to predict the category of opinion—for instance classifying amicus curiae briefs as pro-

petitioner or pro-respondent (e.g. Evans et al., 2007), is of less direct interest since these categories

are already known. The text of a document can reveal nuances that are not captured by and sometimes

in disagreement with its class label.

Here, we focus on an application that is ill-suited to text classification but where text is nonethe-

less informative. We analyze the 1991 Irish Dáil confidence debate, previously studied by Laver and

Benoit (2002) who used the debate speeches to demonstrate their “Wordscores” scaling method. The

context is that in 1991, as the country was coming out of a recession, a series of corruption scan-

dals surfaced involving improper property deals made between the government and certain private
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TABLE 1
Irish Dáil debate speech statistics.

Government party members Opposition party members
Fianna Fáil (FF) 24 Democratic Left (DL) 3
Progressive Dems. (PD) 1 Fine Gael (FG) 22

Green 1
Labour (Lab) 7

Speech text
Median length (leaders) 6,348 tokens
Median length (others) 2,210 tokens
Vocabulary size 9,731 word types

companies. The public backlash precipitated a confidence vote in the government, on which the leg-

islators (each called a Teachta Dála, or TD) debated and then voted to decide whether the current

government would remain or be forced constitutionally to resign. Table 1 summarizes the composi-

tion of the Dáil in 1991 and provides some descriptive statistics about the speech texts, including the

number of total words (“tokens”) and unique words (“types”). We can use the debate as a chance to

learn the legislators’ ideological positions.

Because the Irish parliamentary context is characterized by strict party discipline, the move was

largely symbolic and each legislator voted strictly with his or her party: all members of the governing

parties (Fianna Fáil and the Progressive Democrats) voted to support the government, and all mem-

bers of the opposition parties (the Democratic Left, Fine Gael, Green, and Labour) voted against. If

we wanted to estimate different degrees of support, for instance to identify reluctant supporters of a

vote, then we would need more than the uninformative voting that occurs entirely on party lines. In

political science, this has long been a core challenge in testing theories of intra-party politics, because

in parliamentary systems with strong party discipline legislators may “vote with their party possibly

not because of their policy preferences, but rather in spite of them” (Schwarz, Traber and Benoit,

2017, 379). What they say, however, is typically not subject to party discipline and provides far more

sincere information about their relative preferences.

Take, for example, the following excerpt from Noel Davern, a moderate from the Fianna Fáil

party:

It is not that the financial scandals have not occurred. They have occurred and the Government have taken quick action

on them. In fact, we are not fully qualified to speak on them until we see the results of the full and independent inquiry.

Davern supports the government, but at the same time does not excuse them from all culpability.

Contrast this with a typical opposition speech, calling for a vote against the confidence motion, from

Labour TD Michael Ferris:

Our decision to oppose this motion of confidence is a positive assertion of the disapproval of the ordinary people of

the actions of this discredited Government. The people have watched with amazement the unfolding of scandals which
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have tainted this Government. The Government cannot now be said to deserve the confidence of the people.

Both legislators express views that place them somewhere between the two extremes of absolute

government support and absolute opposition support.

Where do Davern, Ferris, and the other 56 TDs that participated in the debate lie on this ideological

spectrum? This is the essential question that we attack in this manuscript. In answering the question,

we have at our disposal the speech texts, along with some additional information. We know that the

leader of the government (Haughey, the Fianna Fáil Taoiseach) will give a speech at one extreme

of the pro-government spectrum, and we know that the heads of the two major opposition parties

(Spring and De Rossa, the Labour the Democratic Left leaders) will be at the extreme of the other

end. We will use these three texts as reference points by which to scale the other 55 ambiguous texts

whose positions are unknown and must be estimated.1

To solve our particular problem, we develop a new text scaling method that is broadly applicable

to situations where most documents are unlabelled but we have a few examples of documents at the

extremes of a hypothesized ideological or stylistic spectrum. Instead of predicting class membership,

our objective in such problems is to scale a continuous characteristic, through measuring the fit of

a text to a set of known classes based on its degree of similarity to typical texts from these classes.

The novelty of this approach is that it can scale an unlimited number of texts whose latent positions

– what we term class affinities – are unknown, from a small pair of archetypical, extreme reference

texts. Scaled positions are always relative to these anchors, making the resulting estimates directly

interpretable, unlike unsupervised scaling methods. While ours is not the first method to implement

this form of supervised scaling, ours is the first to provide an explicit statistical foundation for scal-

ing (unlike for instance Laver, Benoit and Garry (2003)) or to focus directly on estimating a latent

attribute rather than adapting a machine learning technique designed for predicting a discrete class.

In what follows, we develop the class affinity model and demonstrate its use in scaling the degree

of support or opposition expressed in the speeches made during the confidence debate. We start by

outlining the foundations of our scaling model, contrasting it first to similar approaches designed for

classification (Section 2), and then to lexicographical association methods in the form of sentiment

dictionaries (Section 3). Section 4 then sets out the model, comparing this to related methods, high-

1In this example and generally for the applications to which our model applies, texts known to be extreme must be

identified as reference texts. This is the same problem as in any machine learning application requiring the appropriate

choice of training data, but in our class of problems is generally known ex ante, since the objective is to leverage a small

number of known extreme positions to estimate a much larger number of unknown positions, relative to these extremes.

See Laver, Benoit and Garry (2003) for a discussion of this problem.
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lighting the differences through on statistical principles but also using our application. Sections 5.1

and 5.2 detail how this model and its reference distributions are estimated, while Section 9 relates the

affinity model to related methods. In Section 6, we show how to measure the influence of individual

words, provide recommendations for removing common terms that might skew the resultsm and de-

scribe how we applied this procedure to choose a tailored vocabulary for our application. Section 7

demonstrates how to estimate uncertainty for the class affinity scaled estimates. Finally, we summa-

rize the results the results of fitting the class affinity model to our application (Section 8), and offer

some concluding remarks.

2. Scaling with a classification method. We have stated repeatedly that classification is not our

objective in this problem, but nonetheless there is a long tradition of fitting classification methods

to text, and we might try applying one of those methods here. We have a “training set” of the three

leadership speeches, one of which we can label as Government and two as Opposition. We can fit a

supervised classification method to this training set and then use it to make predictions for the other

55 legislators.

Using the Naive Bayes text classification method popularized by Sahami et al. (1998), we would

model the tokens in each speech text as independent draws from a label-dependent distribution es-

timated from the reference texts. Letting label k = 1 denote Government and label k = 2 denote

Opposition, for each label k ∈ {1,2} and word type v in our vocabulary V , we would estimate pkv,

the probability that a random token drawn from a text with label k is equal to v. Typically we use

the empirical word occurrence frequencies in the reference documents or some smoothed version

thereof. Here and throughout the text, unless otherwise noted we will take our vocabulary to be the

set of word types that appear at least twice in the leadership speeches, excluding common function

words from the modified Snowball stop word list distributed with the quanteda software package

(Porter, 2006; Benoit et al., 2018); we ignore words outside this set.

Under the “naive” assumption that tokens in a text are independent draws from the same distribu-

tion, assuming equal prior odds for each label, the log-odds that the label is Government given the

word counts x = (xv)v∈V is

η(x) = ∑
v∈V

xv log(p1v/p2v),

where xv denotes the number of times that word type v appears in the text, and V represents the

total set of word types. The expression for η(x) arises as the log ratio of two multinomial likelihoods

with probability vectors p1 and p2. Using Naive Bayes classification for this two-class prediction

problem, we would predict the label as Government when η(x)> 0, and we would predict the label
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Fig 1: Odds of class membership for the debate speeches as predicted by a Naive Bayes model. Points
above the dashed lines have predicted class probabilities exceeding 99.999%.

as Opposition when η(x)< 0.

The quantity η(x) measures the strength of the evidence that the label of a text is Government or

Opposition, and we can use this quantity to scale the 55 virgin texts. Unfortunately, the Naive Bayes

scaling method has serious drawbacks. First, the estimated log odds tend to be absurdly high. On our

example, the median absolute log odds is 197.8, corresponding to an unrealistically high probability

of class membership exceeding 1− 10−85. Second, because η(x) is measuring the strength of the

evidence, longer texts will tend to have higher absolute log odds. We illustrate both of these defects

in Fig. 1, where we plot the absolute odds of class membership as a function of text length.

Related methods suffer from versions of this same problem. Multinomial inverse regression (Taddy,

2013) regularizes the probability vector estimates p1 and p2 and adds a calibration step to the log-

odds, but it still suffers from the same drawbacks as Naive Bayes. Discriminative methods, like those

used by Joachims (1998) and Jia et al. (2014), are affected to a degree depending on their choice of

features. With logistic regression, for example, when the features are linear functions of the counts x,

then it will still be the case that longer documents have more extreme counts and hence more extreme

predictions.

One could potentially fix the issue of longer documents getting more extreme predicted probabil-

ities by using relative frequencies (xv/n) as features instead of absolute counts (xv). However, even

with this choice of features there is still a fundamental disconnect between the classification philos-

ophy and the goals of scaling. In the classification world, a document is either “black” or “white;”
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for an unlabelled document, the method will tell you the probability that the label is black. In reality,

though, a text is “gray,” a mixture of black and white. This is a fundamental difference in perspective

that precludes using a classification method for our task. We expand on this metaphor below.

3. Scaling with dictionaries. Not all text scaling methods take the black-and-white classifica-

tion view of the world. One of the most successful alternatives is dictionary-based scaling (Stone,

Dunphy and Smith, 1966; Pennebaker, Francis and Booth, 2001; Hu and Liu, 2004). In their sim-

plest forms, dictionary methods conceive as each text as a mixture of two contrasting poles, such

as positive and negative. Neutral words get discarded from the vocabulary. The scaling of a text is

determined by the average orientation of its tokens.

There are many variations of dictionary-based scaling but for concreteness we will focus on Grim-

mer and Stewart’s (2013) formulation. To apply that scaling to the problem at hand—scaling debate

speeches—we would need two non-overlapping lists: one of words associated with Government and

one of words associated with Opposition. Given these lists, we would assign a score sv =+1 to each

word type v in the Government list, and a score sv = −1 to each word type v in the Opposition list.

The dictionary-based scaling of a text with token count vector x would be

t(x) =
1
n ∑

v∈V
xv sv,

where n = ∑v∈V xv; this quantity is equal to the difference in word type occurrence rates between the

Government and Opposition lists.

It is labor-intensive and error-prone to build a custom dictionary for each application, so often

when practitioners apply dictionary scaling methods, they use off-the-shelf dictionaries instead of

building their own. For our application, the Lexicoder sentiment dictionary (LSD, 2015 version), “a

broad lexicon scored for positive and negative tone and tailored primarily to political texts,” would

be a natural choice (Young and Soroka, 2012, 211). However, as those authors note, applying an off-

the-shelf dictionary to a new domain often leads to undesirable results. Table 2 illustrates this point

in the context of our application by comparing the word orientations as determined by the LSD with

their empirical associations with Government and Opposition as observed in the leadership speeches.

The rows indicate the LSD-assigned orientations of the words, taking negations into account as rec-

ommended by Young and Soroka (2012). The columns are the associations of each word with the

government/opposition status of the speaker, using the “keyness” G2 likelihood ratio score, where

associations with Government speaker usage of terms where p <= 0.05 classed as “Government”,

and similarly for associations with Opposition speaker usage, and terms outside of that range classed
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TABLE 2
Comparing government and opposition words to Lexicoder sentiment dictionary matches.

Government/Opposition
Sentiment Government Neutral Opposition

Positive 11 377 2
partners, progress, balance, achieved,

legitimate, best, forward, better,
improvement, improvements

confidence, like, great, well, ensure,
hope good, opportunity, normal,

responsible

wealth, creation

Neutral 66 2,329 54
public, now, economic, per, economy,
cent, growth, new, way, community

government, country, business, irish,
made, many, us, can, years, must

people, political, house, mr,
one, taoiseach, minister,
deputy, time, questions

Negative 8 346 0
problems, ireland’s, debt, difficulties,

deficit, deterioration, opposite,
implications

scandals, ireland, difficult, allegations,
failed, concern, scandal, unfortunately,

innuendo, loss

—

as “Neutral.” We display the number of word types in each cell, along with the most common words.

If the dictionary were appropriate for our application, we should observe positive words associated

with government usage, and negative words associated with opposition usage. The patterns in Table 2,

however, show a very different result. Only 11 “positive” words have high usage in the government

leadership speech, and no “negative” words have high usage in the opposition leadership speeches.

Most “positive” and “negative” words do not have a clear association with either Government or

Opposition. Furthermore, there are some worrying cases where the dictionary orientation is counter

to the association between the classes. For example, while the LSD declares the word to be negative,

in the context of the debate deficit refers simply to a fiscal outcome; likewise, confidence is related

to the question of the debate, and not intended to convey positive valence. Despite being designed

to detect political valence, the dictionary fails here since it has not been tailored for this particular

debate. Terms that are associated with one type of affect generally are used differently in the context

of the no-confidence debate.

Beyond the problem of domain adaptation, the more fundamental issue with dictionary methods

is that their basic premise—that each word has a clear orientation—is inappropriate in our domain.

Most words in our application do not clearly either belong in one category or the other. We can seen

this in Table 2, where over 95% of the word types do not have statistically significantly different

usage rates between the government and opposition leadership speeches. The vast majority of words

get used by both government and opposition, and thus have mixed associations with both classes.

Some dictionaries try to adjust for this by giving non-binary scores to the words (Bradley and Lang,

1999), but these adjustments are often ad hoc, and they suffer from the same domain adaption prob-

lems. In the sequel, we present an alternative method that allows for mixed word association while

simultaneously adapting to the domain.
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TABLE 3
Word- and document-level assumptions from three scaling methods.

Documents
Gray Black/White

Gray Affinity Model Classification

Words
B/W Dictionaries

4. The affinity model. Classification methods assume that each text is a member a well-defined

category. Dictionary methods do not make this strong assumption, but they too take an unrealistic

view of the world by supposing that each word has a well-defined orientation. Table 3 highlights this

difference, and makes clear that there is room for a third worldview allowing both texts and words to

be gray. We will formalize this intuition in a statistical model that we refer to as the “affinity model.”

Our basic conceptual model is that over the course of a speech, a speaker’s orientation switches

back and forth between Government mode and Opposition mode. When she is in Government mode,

she chooses words in the same manner as the government leadership. Likewise, when she is Opposi-

tion mode, she chooses words in the same manner as the opposition leadership. We should place the

speaker on the spectrum between the two extremes of pro-government and pro-opposition according

to what proportion of time she spends in each mode. Our perspective is that documents do not have

“true” classes, but instead they are mixtures of classes. This perspective is related to but differs from

that of Biecek et al. (2012), who instead assume that items have true classes but uncertain class labels.

Formally, let V denote the vocabulary of word types, a set with cardinality |V | = V . Encode the

text of a speech as a sequence of tokens W = (W1,W2, . . . ,Wn), with each token Wi belonging to V . In

our model, the speaker’s underlying orientation evolves in parallel to the text and can be represented

as discrete latent random variable U = (U1,U2, . . . ,Un) taking the values i = 1, . . . ,k, where the value

Ui denotes the speaker’s underlying orientation while uttering token Wi. We will in general suppose

that there are K possible orientations, identified with the labels 1, . . . ,K.

In our conceptual framework, a speech and the corresponding underlying orientation sequence are

realizations of some speaker-specific random process. For k = 1, . . . ,K, we define a speaker’s affinity

toward orientation k as θk, the expected proportion of time that her underlying orientation is k:

θk = E
{1

n

n

∑
i=1

I(Ui = k)
}
,

where I(·) denotes the indicator function. Each speaker has an underlying affinity vector θ=(θ1, . . . ,θK).

In our specific application, there are K = 2 orientations. Each debate speaker has a separate affinity

vector θ = (θ1,θ2). We will scale each speaker by estimating his or her affinities for Government (θ1)

and Opposition (θ2).
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Speaker affinity

Intended class

Observed words

θ

U1 U2 · · · Un

W1 W2 · · · Wn

θ

U

W1 W2 · · · Wn

(a) Class affinity model (b) Classification Model

Fig 2: Generative model for the underlying orientation U and the token sequence W , contrasting the
class affinity model to the classification model.

We will impose two simplifying assumptions to make inference under our model tractable. First,

we will suppose that U1,U2, . . . ,Un are independent and identically distributed. This forces that for

every label k, and position i, the underlying orientation is randomly distributed with Pr(Ui = k) = θk.

Second, we will suppose that W1,W2, . . . ,Wn are independent conditional on U , and that the distribu-

tion of Wi |U depends only on Ui and is the same for all positions i. This positional invariance allows

us to define for each label k and word type v the probability

pkv = Pr(Wi = v |Ui = k)

and it allows us to define the reference probability vector pk = (pkv)v∈V . Our two simplifying as-

sumptions result in a generative model: for each position i = 1, . . . ,n, the speaker picks an underlying

orientation with probabilities determined by θ; given that the underlying orientation is Ui = k, the

speaker picks token Wi according to distribution pk. Fig. 2(a) summarizes this generative process.

For each position i = 1, . . . ,n, the chance that word v appears in position i is

Pr(Wi = v) =
K

∑
k=1

Pr(Ui = k)Pr(Wi = v |Ui = k) =
K

∑
k=1

θk pkv.

Further, W1,W2, . . . ,Wn are independent conditional on U , so that the probability of observing the

token sequence w = (w1, . . . ,wn) is

(1) Pr(W = w) =
n

∏
i=1

( K

∑
k=1

θk pkwi

)
= ∏

v∈V

( K

∑
k=1

θk pkv
)xv ,

where xv is the number of times word v appears in the text. At a high level, this is the same generative

model as that used for a topic model (Blei, Ng and Jordan, 2003). The main difference between these

models is that topic models are typically unsupervised, but the affinity model uses supervision to

estimate p1, p2, . . . , pK . We elaborate more on the connection to topic models in Section 9.4.
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We note also that the affinity model can be seen as a generalization of the Naive Bayes model

depicted in Fig. 2(b). In the Naive Bayes model, each document has a single underlying orientation,

U . All words in the document share the same underlying orientation. The parameter θ can be seen as

the prior distribution for U . In Naive Bayes, we do not estimate θ, but instead we estimate Pr(U = k |

X1, . . . ,Xn) for each class k. In Naive Bayes, each document has just one underlying orientation. The

power of the affinity model is that it allows the underlying orientation to vary with the word position.

In our application, and indeed in most applications involving natural text, our two simplifying

assumptions are unlikely to be true. Speakers do not order their words arbitrary, but do so in a way

that respects grammatical and other structure, so in reality W1, . . . ,Wn are not conditionally indepen-

dent given U . Further, speakers are not likely to alternate between orientations within sentences, so

U1, . . . ,Un are likely not independent in real speech. Nonetheless, it is still plausible that one could

fit the affinity model to a real text to get an informative estimate θ̂. In assessing the uncertainty of

θ̂, though, one may not want to lean too heavily on the independence assumptions. We will return to

this point in Sec. 7.

5. Estimating affinities.

5.1. Estimating affinity vectors. The affinity model described in Section 4 lends itself naturally

to likelihood-based estimation. We first consider the problem of estimating the affinity vector θ for a

particular text, when we are given the reference distributions p1, . . . , pK . We will return to the issue

of estimating the reference distributions in Section 5.2.

The parameter space for the affinity vector is the simplex Θ ⊂ RK consisting of all vectors θ

with non-negative components satisfying the equality constraint ∑
K
k=1 θk = 1. One implication of the

equality constraint is that the model is over-parametrized, which makes estimating θ directly awk-

ward. To handle this constraint, we will reparametrize the model in terms of a (K− 1)-dimensional

contrast vector β.

In the K = 2 case, we set β = (θ2−θ1)/2, so that θ1 = 1/2−β and θ2 = 1/2+β; the parameter

space for β is B = [−1/2,1/2]. In the general case we let β be defined by the relation

(2) θ = θ0 +Cβ,

where θ0 is any point in the interior of the parameter space and the contrast matrix C ∈RK×(K−1) has

full rank and satisfies CT1 = 0. In principle θ0 and C can be arbitrary, but for concreteness we will

take θ0 to be the center of the parameter space θ0 = (1/K,1/K, . . . ,1/K), and we will take C to be the

Helmert matrix. The parameter space for the contrast vector, then, is B = {β ∈RK−1 : θ0 +Cβ� 0},
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where � denotes component-wise partial order. With this particular choice of θ0 and C, the general

case agrees with the special case when K = 2.

Following equation (1), the log-likelihood function for the contrast vector is

(3) l(β) = ∑
v∈V

xv logµv,

where µv = ∑
K
k=1 θk pkv and θ = θ(β). We will estimate β by maximizing l(β) or a penalized version

thereof.

In the special case when K = 2, the score and observed information functions gotten from differ-

entiating the log likelihood are

u(β) = l′(β) = ∑
v∈V

p2v− p1v

µv
xv,

I(β) =−l′′(β) = ∑
v∈V

(p2v− p1v)
2

µ2
v

xv.

The expected information is

i(β) = E{I(β)}= n ∑
v∈V

(p2v− p1v)
2

µv
.

To define the analogous functions in the general case, define the matrix-valued function Q =

Q(β) ∈ RK×V with Qkv = pkv/µv. In the general case, the analogous functions are

u(β) =CTQx,(4)

I(β) =CTQXQTC,(5)

where X ∈ RV×V is the diagonal matrix with Xvv = xv for v ∈ V . The expected information is

i(β) = nCTQPTC = nCTPQTC,

where P ∈ RK×V is the matrix with kth row equal to pT
k for k = 1, . . . ,K.

The observed information function I(β) is positive semidefinite, indicating that the log likelihood

function l(β) is concave. We can estimate β by maximizing the log likelihood using the Newton-

Raphson iterative method. The expensive part of this maximization procedure is computing I(β),

which takes time O(V K2), or faster if the count vector x is sparse. In our experience on the Dáil

speeches, the method typically converges after about five iterations. The difficult part of the opti-

mization is that we must restrict the search to the parameter space B; we accomplish this using an

interior-point barrier method (Boyd and Vandenberghe, 2004, Ch. 11).2

2An alternative estimation procedure is to use an expectation-Maximization algorithm, which produces similar results
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In exchange for adding a small bias to the estimates, we can reduce the variance and remove the

explicit inequality constraints on the parameter space. In particular, Firth (1993) shows that in the

asymptotic regime where n tends to infinity, adding a penalty of order O(1) to a log likelihood adds

a term of size O(1/n) to the bias of the estimator (sometimes reducing the estimator’s bias, but not

necessarily doing so in our setting). In our case, we choose a positive scalar λ and define the penalty

function

ψλ(θ) = λ

K

∑
k=1

logθk.

Then, we estimate the affinities by maximizing the penalized log likelihood l̃λ(β) = l(β)+ψλ(θ),

where θ = θ(β). The penalty ensures that l̃λ is strictly concave, and further that the maximizer β̂λ is

unique and belongs to the interior of the parameter space. For the analyses in this manuscript, we use

the penalty value λ = 0.5. Section 5.2 provides some theoretical justification for this penalty value in

a related context. (In our Appendix C we explore a range of these values, confirming the choice of

0.5.)

5.2. Estimating reference distributions. The reference distributions p1, p2, . . . , pK themselves

need to be estimated from data. In our framework, this learning step requires not large volumes

of training data, but rather texts that are clearly polar examples of each reference class, to form

benchmarks for estimating the other texts’ affinities to these classes. In the context of our specific

application, the 1991 Irish Dáil confidence debate, recall that the contrasting K = 2 classes represent

Government (k = 1) and Opposition (k = 2). We will use the leaders of the government and opposi-

tion respectively to represent the archetype texts for each class. Taoiseach (Prime Minister) Charles

Haughey’s speech forms the government reference text for estimating p1, and the speeches from the

two opposition party leaders (Spring and de Rossa) form the reference texts for estimating p2.

To estimate a particular reference distribution p, we will suppose in general that we have at our

disposal m texts drawn from this distribution of lengths n1,n2, . . . ,nm. We denote the vectors of word

counts for these texts by x1,x2, . . . ,xm. In our application, m = 1 for estimating the Government refer-

ence, and m= 2 for estimating the Opposition reference. We will use smoothed empirical frequencies

to estimate pv as advocated by Lidstone (1920). We choose a nonnegative smoothing constant α and

but requires many more iterations. Here, we prefer the simplicity of the Newton-Raphson approach and the fact that that

the derivation of the Newton-Raphson step permits us to work out the relationship more directly with other measures (such

as Wordscores) and to derive the influence measures. In Appendix B, we show how EM can be used as an alternative fitting

procedure.
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estimate the probability of word type v as

p̂v =
(

α+
m

∑
j=1

x jv

)/(
V α+

m

∑
j=1

n j

)
.

Specifically, we will set α = 0.5. It is not essential to smooth the estimates of p, but doing so reduces

estimation variability.

There are many reasonable choices for the smoothing constant α, including choosing α adaptively

(Fienberg and Holland, 1972). In natural language processing, it is common to take α = 1 so that p̂

is the maximum a posteriori estimator under a uniform prior (Jurafsky and Martin, 2009, Sec. 4.5.1).

From a frequentist standpoint, the value α= 0.5—which corresponds to using a Jeffreys prior for p—

is slightly more defensible. In the regime where V is fixed and n tends to infinity, using the results

from Firth (1993) one can show that using α= 0.5 results in an expected Kullback-Leibler divergence

from p̂ to p of order O(n−3/2) instead of O(n−1) for other choices of α.

Once we have estimates p̂1, p̂2, . . . , p̂K of the reference distributions, to get an estimate of the

class affinity vector θ for a text, we use the methods from Section 5.1, using the estimated class

distributions in place of their true values. This plug-in procedure allows us to get point estimates of

θ. There are two sources of uncertainty in each estimate θ̂: randomness in the vector of counts, x, and

randomness in the reference distribution estimates p̂1, p̂2, . . . , pK . For a full uncertainty estimate, we

need to account for both sources. We will return to this point in Section 7.

One limitation of our estimation scheme is that it does not use information from the non-extreme

speeches. We could potentially try to incorporate these speeches into our estimates p̂1, p̂2, . . . , p̂K us-

ing a semi-supervised approach like that of Murphy, Dean and Raftery (2010), for example. However,

there are dangers to doing so, namely the possibility of fitting word probabilities from lexicon that

does not relate to the primary axis of class affinity. In work applying unsupervised scaling to Irish

budget speeches in the parliament, for instance, Lowe and Benoit (2013, 308-309) found that the un-

usual position of Sinn Féin introduced an alternative dimension to the debate to an otherwise mainly

government-opposition divide, causing unsupervised estimates of the positions from Sinn Féin TDs

to be estimated wrongly when compared to human coding. By selecting extreme texts on a known

dimension, the scaling is based on affinities to classes known to the analyst to be represented clearly

by these extreme texts, rather than the myriad of other possible language patterns found in texts that

are not so clearly representative of the class extremes.

6. Vocabulary diagnostics and selection. An additional advantage of the simple analytic form

of the affinity is how it facilitates computationally efficient diagnostic checking for the model fit.
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Ideally, our fit should exhibit two characteristics. First, it should not be driven by a small number

of word types, but instead it should be determined by an accumulation of information from many

different word types. Second, the word types that show the most influence in determining the fit

should be ones that make sense from a subject matter perspective. To check whether our scaling

results satisfy these properties, and to better understand them generally, we will develop an influence

measure to characterize the impact of each word type in determining the overall fit.

Our strategy for assessing influence stems from Cook (1977), who, in the context of linear regres-

sion, assesses the influence of each observation by measuring the change that results from deleting

the observation. Proceeding analogously, we will measure the influence of a word type v ∈V by set-

ting the corresponding token count xv to zero and observing the change in the class affinity estimate

θ̂. Ideally, we would do this by computing the maximizer θ̂(−v) of the log likelihood (or, when reg-

ularizing, the penalized log likelihood) gotten after setting xv to zero, but the large number of word

types makes this impractical. In fact, a more direct analogy with Cook’s distance would delete v from

all documents, not just the reference text, but doing so would be more computationally intensive and

give similar results. We will settle for finding a computationally simple closed-form approximation

to θ̂(−v).

Suppose that x is a vector of token counts for the particular text of interest, and that θ̂ = θ0 +Cβ̂

is the affinity vector estimate gotten from β̂, the maximizer of the corresponding log likelihood l(β)

defined in (3). Making the dependence on x explicit, the score and observed information functions

are

u(β;x) =CTQx, I(β;x) =CTQXQTC,

where X ∈ RV×V is a diagonal matrix with Xvv = xv for v ∈ V and Q = Q(β) is as defined in

Section 5.1.

For an arbitrary word type v ∈ V , consider the effect of setting xv = 0. This defines a new vector

of token counts x(−v) defined by x(−v)
v = 0 and x(−v)

w = xw for all w 6= v. Let ev denote the vth standard

basis vector in RV and define hv =CTQ̂ev, where Q̂ = Q(β̂). Note that x = x(−v)+ xvev, so that

u(β̂;x) = u(β̂;x(−v))+ xv hv, I(β̂;x) = I(β̂;x(−v))+ xv hvhT
v .

Since u(β̂;x) = 0, this implies that evaluating the score function with the new data at the old estimate

gives

(6) u(β̂;x(−v)) =−xv hv.
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The maximizer β̂(−v) of the new log likelihood is roughly equal to the first Newton scoring step from

β̂. We can compute this step explicitly by first computing the inverse of the observed information

matrix:

{I(β̂;x(−v))}−1 = {I(β̂;x)− xv hvhT
v }−1

= {I(β̂;x)}−1 +(x−1
v − h̃T

v hv)
−1 h̃vh̃T

v(7)

where h̃v = {I(β̂;x)}−1hv.

Approximating the maximizer by the first Newton step from β̂ gives

β̂
(−v) ≈ β̂+{I(β̂;x(−v))}−1 u(β̂;x(−v))

= β̂− (x−1
v − h̃T

v hv)
−1h̃v,

where we have used (6) and (7) to simplify the expression. Using this approximation for β̂(−v) gives

us an approximation for the change in the estimated affinities:

θ̂− θ̂
(−v) =Cβ̂−Cβ̂

(−v)

≈ (x−1
v − h̃T

v hv)
−1Ch̃v.

Motivated by this approximation, we define our influence measure as

(8) dv = (1/2)‖(x−1
v − h̃T

v hv)
−1Ch̃v‖1,

where ‖ · ‖1 denoteds 1-norm. When we are regularizing the estimates, using a penalized log likeli-

hood l̃(β;x) in place of l(β;x), we define the influence similarly, using the negative Hessian−∇2
β
l̃(β;x)

in place of I(β;x).

Using a 1-norm instead of a Euclidean norm in the definition of dv allows us to interpret dv as the

total amount of positive change to the components of θ̂. Given that 1T(θ̂− θ̂(−v)) = 0, this is also

equal to the total amount of negative change.

In the our results (including those presented in Fig. 4) we excluded words appearing only once

and words on the English Snowball “stop” word list. Why did we exclude these words?

After fitting affinity model to the complete vocabulary and using it to scale the 55 non-leadership

speeches, we computed the influence measures as defined in (8) for each speech word count vector x

and word type v,as well as the direction of influence (whether the appearance of the word pushes the

fit towards Government or Opposition). This gave us a 55×9731 matrix of (speech, word) influence

measures. Most of the entries of this matrix are zero since most count vectors x are sparse and words
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that do not appear in a speech have no influence on its affinity estimate. For each word type, we

recorded the count of nonzero speech influence entries, along with the median and maximum of

the nonzero entries. (We report these values in the Appendix, where we also compare the influence

measures for each word to alternative selection scores such as entropy or a G2 association measure.)

The influence of a word is determined by its usage rate and the degree to which is usage is imbal-

anced across the reference classes. The most influential words are those that appear frequently and

exhibit a small imbalance between Government and Opposition, or else appear moderately and ex-

hibit a large imbalance between the two classes. This holds generally: influential words tend to either

be highly imbalanced, or moderately imbalanced with high usage rates. For example social, nation,

and economic influence the affinity fit towards Government, and people and taoiseach influence the

affinity fit towards Opposition. However, we also discovered that certain function words like and and

the exerted a big influence on the fit. These function words have slightly imbalanced usage rates in

the reference texts, which, compounded with a high usage rate, results in a large net influence. This

sensitivity to stylistic differences is a manifestation of a common critique of the related Wordscores

scaling method (Beauchamp, 2012; Grimmer and Stewart, 2013). To reduce sensitivity to stylistic

differences, we eliminated function words (the Snowball English “stop” words) from our analysis.

We also saw that a few rare words like attribute and proof have large influence. These words

are not meaningful discriminators on substantive grounds, but they show up as influential because

they only appear once in the reference speeches. The estimated probabilities for these words are

unreliable. Their influence is determined purely by estimation variability. To get around this, in our

final analysis we choose to exclude these words—the hapax legomena—that only appear once in the

reference speeches.

After excluding stop words and hapax legomena, we were left with a reduced vocabulary V of

1321 word types. We re-fit the model and re-scaled the speeches, computing the influences of the

word types in the reduced-vocabulary model. Table 4 shows the most influential Government and

Opposition words, computed as before.

7. Uncertainty quantification. In principle, it is possible to get standard errors for an affinity

estimate θ̂ directly from the expected or observed information function (5). However, this likelihood-

based standard error is likely too narrow, because it ignores uncertainty in the estimates of the refer-

ence distributions ( p̂1, . . . , p̂K), and it relies on the independence assumptions in the model. Ignoring

uncertainty in the reference distribution estimates is inappropriate when the reference set is small,

as it is here (three leadership speeches). Similarly, the independence assumption—that word tokens
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TABLE 4
Influential words after feature selection. Median and maximum influence (×100) exerted by the most influential words,

grouped by direction of influence. Medians are computed over texts containing the word.

Government Opposition

Word Count Median Max Word Count Median Max

deasy 3 0.9 1.8 people 54 1.3 4.9
nation 12 0.8 1.8 taoiseach 43 0.8 3.1
cent 26 0.8 3.4 democrats 23 0.7 1.9
social 30 0.7 10.4 minister 44 0.6 2.5
corresponding 1 0.7 0.7 system 37 0.6 2.7
1990 17 0.7 1.9 house 54 0.5 1.9
union 9 0.7 1.0 o’kennedy 5 0.5 0.9
per 31 0.7 3.1 progressive 24 0.5 1.4
belief 3 0.7 1.0 say 39 0.5 1.3
reform 19 0.6 2.4 issue 27 0.5 1.4
1987 20 0.6 4.0 million 26 0.5 1.5
economic 33 0.6 2.8 headings 2 0.5 0.5
roads 6 0.6 2.6 wealth 6 0.5 1.4
development 29 0.6 2.7 printed 2 0.4 0.7
new 38 0.6 1.6 said 41 0.4 1.6

in different positions of a text are independent of each other—simplifies the analysis, but it is likely

violated in real-world data. To accurately assess the uncertainty in our estimates, we need a method

that accounts for the uncertainty in the reference distribution estimates and the dependence between

nearby words in text.

To estimate the sampling distribution of the scaling estimates under dependence between word

tokens, we will use a block bootstrap that respects the natural linguistic structure of the text, by fol-

lowing Lowe and Benoit (2013)’s recommendation to resample texts at the sentence level to simulate

sampling variation but also to capture meaningful dependencies among words within natural syn-

tactic units. To properly account for uncertainty in the reference distribution estimates, we will also

construct sentence-level bootstrapped reference speeches. To describe the procedure, we let t1, . . . , tR

denote the reference texts, and we let s denote the scaled text. The procedure is as follows:

1. For bootstrap replicates b = 1, . . . ,B:

(a) Construct bootstrapped reference texts t∗b1 , . . . , t∗bR , where t∗bi has sentences drawn with

replacement from ti, with the same total number of sentences.

(b) Use the bootstrapped reference texts t∗b1 , . . . , t∗bR to estimate the reference distributions

p̂∗b1 , . . . , p̂∗bK as described in Sec. 5.2.

(c) Construct a bootstrap version of the scaled text, s∗b by resampling sentences from s, with

replacement.

(d) Treating the reference distribution estimates p̂∗b1 , . . . , p̂∗bK as fixed, construct an affinity-

scaling estimate θ̂∗b from s∗b.

2. Use the sample standard deviation of θ̂∗1, . . . , θ̂∗B as the bootstrapped estimate of the standard
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error of the affinity scaling estimate θ̂ for s.

We performed this procedure for all of 55 non-leadership speeches, getting a separate bootstrap

standard error for each. For comparison, we computed likelihood-based standard error for the esti-

mates from the Fisher information conditional on the reference estimates. Unsurprisingly, the boot-

strap standard errors are generally wider than the likelihood-based estimates. The two uncertainty

estimates are both on the same order of magnitude, with the bootstrap standard error being less than

1.5 times as large as the likelihood-based standard error for most of the speeches (87%); the median

ratio of the two standard errors is 1.3. In the sequel, we use bootstrap standard errors to quantify the

uncertainty in the affinity estimates.

8. Results. Fig. 3 displays the estimated government affinities for all 55 speeches using the

reduced vocabulary as discussed in Sec. 6. Within each party grouping, which separates the Fianna

Fáil ministers from the non-ministerial backbench speakers, we plot the median affinity position

as a vertical bar. The figure includes 95% confidence intervals, computed using the sentence-level

bootstrap from the previous section.

At both the level of the government versus opposition and inter-party levels, the results are entirely

in line with expectations: not only are the parties arrayed in an order that would be consistent with

expectations, with opposition parties on the Opposition side, and the governing parties on the other,

but also we see that speeches from the different parties align with the extremity of their positions

in regards to the establishment. The speeches of most centrist opposition party, Fine Gael, express a

more moderate anti-Government positions than either the left party Labour or the far-left Democratic

Left party. This median difference emerges clearly even though we considered the speeches of the

Labour and Democratic Left leaders as equivalent for the purposes of training the Opposition class.

The more interesting distinctions emerge when we examine intra-party differences in expressed

position. Among the government ministers, it is not surprising to see that John Wilson, the FF Deputy

Prime Minister (Tánaiste, or “FF Tan” in the plot), and Gerard Collins, the Foreign Minister and a

senior Fianna Fáil minister had extreme Government-oriented estimated positions exceeded only by

the Taoiseach Charles Haughey himself. What is more interesting is that the next minister in the

estimated ranking, Albert Reynolds, would later become the next Taoiseach. At the other extreme,

among the most Opposition-oriented government minister we see notable examples in Raphael (Ray)

Burke, who was removed from his ministerial position the following year, and Mary O’Rourke, who

months later would challenge Albert Reynolds for the party leadership.

The “back-bench” FF members voted with the government but generally gave speeches that were
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Fig 3: Affinity scaling estimates (θ̂1) with bootstrap 95% confidence intervals

far more lukewarm than the FF ministers. Correspondingly, we see that the estimated estimated Gov-

ernment affinities for the back-benchers are generally lower than those of the minsters. There were

three exceptions, members with extreme estimated Government-oriented affinities: Nolan, Cullimore,

and Cowan. One of these members, Brian Cowen, became Minister for Labour the following year,

and occupied senior positions include Prime Minister for the next two decades.

On the opposition side, we see a similar set of heterogeneous estimated affinities. Two salient

examples of extreme estimated Government-oriented affinities are Fine Gael TD Garret FitzGerald,

a former and future Prime Minister, and TD Peter Barry, who had fought Fitzgerald in 1987 for

party leadership. Both emphasized fairly standard economic concerns, attacking the government’s

poor economic performance rather than its corrupt behavior. It is notable that the member with the

highest estimated pro-opposition affinity, DL member Pat Rabbitte who would later become leader

of the Labour Party; in his speech, he engaged in a personal set of attacks against the Taoiseach and

specifically attacking his character and judgment.

Overall, the balance of the positions expressed in the debate favored the opposition position, al-

though this reflected the fact that the majority of the speeches (36 out of 55) were from opposi-

tion TDs. More interestingly, half of the government speakers, predominantly backbenchers, ex-

pressed positions in their speeches closer to the opposition than to the government side—such as

Neil Blaney whom we quoted above, with a position of under 0.40 and right at the median of the

FF backbenchers—reinforcing our point that speeches are far more informative than voting when it
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comes to revealing preferences.

The results of applying the class affinity scaling model to the confidence debate speeches pro-

vides a results consistent with expectations and with previous scholarly investigations of this episode

(Laver and Benoit, 2002). Using only the texts of the speeches, we have succeeded at revealing dif-

ferences between the speakers that were not apparent from their party affiliations.

9. Connections to other methods.

9.1. Dictionary methods. In the special case that the reference distributions p1, p2, . . . , pK have

disjoint supports—that is, when no two classes k and l are such that both pk(v)> 0 and pl(v)> 0 for

some word type v—affinity scaling is exactly equivalent to dictionary scaling.

To make this equivalence clear, suppose that for each word type v∈V , at most one of the reference

probabilities p1v, p2v, . . . , pKv is nonzero. When this is the case, we can partition the vocabulary as a

union of disjoint sets, V = V1∪V2∪·· ·∪VK , where

Vk = {v ∈ V : pkv > 0}.

Here, Vk is the set of word types associated with label k. The disjoint support condition ensures that

each word type v is associated with exactly one label.

Under the disjoint support condition, when we observe the ith token wi, we can immediately infer

the underlying orientation ui to be the only class with this word in its support. The log-likelihood

simplifies to

l(θ) = ∑
v∈V

xv log
( K

∑
k=1

θk pkv

)
=

K

∑
k=1

∑
v∈Vk

xv log(θk pkv)

=
K

∑
k=1

nk logθk + (constant),

where nk = ∑v∈Vk
xv and the constant does not depend on θ. In this case, the maximum likelihood

estimate of the class affinity vector is

θ̂ =
(n1

n
,
n2

n
, . . . ,

nK

n

)
.

That is, the estimated class affinities are the token occurrence rates in the support sets V1,V2, . . . ,VK .

9.2. Wordscores. The “Wordscores” scaling method developed by Laver, Benoit and Garry (2003)

turns out to be closely related to class affinity scaling. That method, which is primarily used to scale
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(d) Support Vector Machine
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Fig 4: Comparisons between scaling methods
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documents between K = 2 reference classes works well in practice but has been criticized for hav-

ing ad hoc theoretical foundations (Lowe, 2008). We can show, however, that Wordscores scaling is

closely related to affinity scaling, and gives highly correlated results for texts that are not close to the

extremes (represented by the reference text positions). We elaborate on this connection below.

In its simplest form, Wordscores takes as given reference distributions for each class, denoted p1

and p2. The method defines the wordscore of a word type v ∈ V as

(9) sv =
p2v− p1v

p1v + p2v
.

Word types that only appear in class 2 have scores of +1, while types that only appear in class 1 have

scores of−1. Other types have intermediate values indicating the relative degrees of association with

the two classes. The unnormalized “text score” of a length-n text with token count vector x is then

the average wordscore of its tokens:

(10) t(x) =
1
n ∑

v∈V

p2v− p1v

p1v + p2v
xv,

Texts with positive t(x) values tend to be more like class 2, while texts with negative t(x) values tend

to be more like class 1.

The magnitude of the unnormalized score t(x) is not directly interpretable. To fix this, Martin

and Vanberg (2007) advocate rescaling the score to ensure that average reference texts from the two

classes have scores of −1 and +1. To realize the Martin–Vanberg scaling, for k = 1,2 define

tk = ∑
v∈V

p2v− p1v

p1v + p2v
pkv.

An average text of length n from class k has token counts satisfying xv/n = pkv, so that its score

is t(x) = tk. Using the relation p1v/(p1v + p2v) = 1− p2v/(p1v + p2v) termwise in the sum, one can

verify that t1 =−t2. The Martin–Vanberg wordscore scaling is

t̃(x) =− t2 + t1
t2− t1

+ t(x) · 2
t2− t1

= t(x)/t2.

An average text x from class 1 satisfies t̃(x) =−1; an average text x′ from class 2 satisfies t̃(x′) =+1.

The wordscore scaling t̃(x) turns out to be deeply connected to affinity scaling. To see this con-

nection, note that using the parameterization from Section 5.1, the score and observed information

functions for the affinity model evaluated at β = 0 are

u(0) = 2 ∑
v∈V

p2v− p1v

p1v + p2v
xv = 2nt(x),

i(0) = 2n ∑
v∈V

(p2v− p1v)
2

p1v + p2v
= 2n(t2− t1).
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There is a striking relationship between the scaled text score and the derivatives of the mixture model

log likelihood:

t̃(x)/2 = {i(0)}−1u(0).

The right hand side of this expression is equal to the first Fisher scoring iterate computed while

maximizing l(β) starting from the initial value β = 0. When the maximizer β̂ is close to 0, it will

be approximately equal to this first iterate. Thus, when a text is roughly balanced between the two

reference classes (β̂≈ 0), it will also be the case that

t̃(x)≈ 2β̂ = θ̂2− θ̂1;

In these cases, the wordscore scaling is a linear transformation of the estimated class affinities.

We demonstrate the quality of this approximation in Fig. 4c, where we plot the wordscore scaling

versus the estimated government affinity for the debate speeches. We can see that there is very good

agreement between the two scalings, and that when t̃(x)≈ 0, the two scalings are almost identical.

9.3. Support vector machines and logistic regression. We have just shown analytically that affin-

ity scaling gives similar results to Wordscores. It turns out that, when the number of reference docu-

ments is small, up to scaling, both methods are approximately equivalent to classifying with a support

vector machine or linear regression.

Suppose that we are in the two-class (K = 2) case, and that there is one reference document for

each class. Imagine fitting a linear classifier that tries to predict class using a document’s word fre-

quencies as features. With a vocabulary size V greater than the number of training documents, the

two classes can be perfectly separated as long as the two reference distributions p1 and p2 corre-

sponding to the training documents are not identical. In this case, the support vector machine fit and

the logistic regression fit are identical, up to differences that arise from regularizing the coefficients.

Given a document with length n and word count vector x, its feature vector is its vector of word

frequencies, n−1x. The feature vectors for the two training documents are p1 and p2. Up to a constant

of proportionality, the maximum margin predictor, expressed as a function of x is

η(x) = (p2− p1)
T{n−1x− (1/2)(p1 + p2)}

=
1
n ∑

v∈V
(p2v− p1v)xv + (const.)(11)

Since the classes are perfectly separated, and multiple of this predictor gives the same classification

performance on the training set; the precise scaling chosen by the fitting procedure will depend on

the regularization parameters.
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Comparing the support vector machine scaling (11) with the unnormalized wordscores scaling (10),

we can see that the only substantive difference is the denominator p1v + p2v in the coefficient on xv.

Thus, up to a constant shift and scale, if p1v + p2v is roughly constant relative to p2v− p1v, then the

two methods will give similar results. In light of the connection between Wordscores and affinity

scaling developed in Sec. 9.2, this implies that in these situations, the support vector machine results

will be highly correlated with the affinity scaling results.

We verified the connection between the two methods empirically, using the SVMlight software

with the default tuning parameters (Joachims, 1999). Fig. 4d shows the support vector machine esti-

mated log odds plotted against the affinity scaling results. Both scalings give similar results (corre-

lation 0.92). The main distinction is that the numerical value of the support vector machine log odds

is determined completely by the regularization parameter and is thus uninterpretable. The affinity

scaling of a document, by contrast, can be interpreted directly.

9.4. Topic models. Topic models share a similar perspective with the affinity model in that both

represent texts as mixtures of topics, with each topic having an associated word distribution. In our

framework, the topics correspond to the reference classes, and the text-specific topic weights corre-

spond to class affinities. We learn the class distributions from a set of labeled reference texts. This

approach differs from that taken by unsupervised topic models (Blei, Ng and Jordan, 2003; Grimmer,

2010), where estimated topics may or may not correspond to scaling quantities of interest.

Supervised variants of topic models allow for associations between labels and topics, but these

models all assume that class membership is discrete, not a continuous scale (McAuliffe and Blei,

2008; Ramage et al., 2009; Roberts, Stewart and Airoldi, 2016). These supervised models force clear

associations between the topics and the scaling quantities of interest, but they assume that the texts

have discrete labels indicating class membership. Even Ramage et al.’s (2009) Labeled LDA—the

closest analogue to the affinity model—assumes that each document expresses a sparse subset of the

reference topics. The fundamental assumption of discrete class membership places these methods

in the same category as other classification methods like Naive Bayes, estimating the probability of

class membership, not class affinity.

Despite their philosophical differences, in practice supervised topic models can give scalings that

are highly correlated with the affinity model scaling. The connection to supervised topic models is

easiest to understand in the case of McAuliffe and Blei’s (2008) Supervised Latent Dirichlet Alloca-

tion (sLDA), which models a text-specific label as a random quantity linked to a linear function of

the text-specific topic weights. Roughly speaking, the method works in two stages. In the first stage,
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sLDA fits a topic model to the reference texts. In the second stage, sLDA fits a logistic regression

model using the fitted topic weights as predictors and the class label as response. In practice, sLDA

fits the topics and the logistic regression simultaneously, but when the number of topics is larger

than the number of reference texts, any differences between sequential and simultaneous fitting are

determined by the regularization parameters and the random initialization.

The connection between sLDA and affinity model scaling is closest with two topics and two refer-

ence texts. In this case, since the number of topics equals the number of reference texts, sLDA can get

a perfect fit by allocating one topic to each reference text, and can separate the two classes perfectly

given the topic weights (θ̂1, θ̂2) by using a linear predictor for the odds of class membership of the

form η = b(θ̂2− θ̂1), where the coefficient b gets determined by the regularization parameters. When

the sLDA fit gets used for prediction on the unlabelled texts, the fitted topic weights (θ̂1, θ̂2) will

be the same as the values from a fitted affinity model (again, ignoring the effects of regularization

regularization and initialization). The sLDA score will be highly correlated with the difference in

estimated affinities.

In the case when there are more topics and more reference texts, the relationship between affinity

scaling and sLDA is not as simple, but the same general intuition still holds and the two methods

still give highly correlated results. Fig. 4e illustrates this with a model using 10 topics, where the

correlation between the non-reference text scalings from the two methods is 0.98. Here, the sLDA

method gives unreasonable results for the extremes. Furthermore, the interpretation of the scaling

value if different: odds of class membership for sLDA, versus degree of membership for the affinity

model.

9.5. Unsupervised methods. Some approaches to scaling texts, including Latent Semantic Index-

ing (Deerwester et al., 1990) and Slapin and Proksch (2008)’s “Wordfish” Poisson scaling method,

estimate latent text-specific traits using unsupervised methods. Often, the estimated traits are corre-

lated with recognizable attributes, and so they can be used to scale ideology. Letting xiv denote the

count of word type v in text i, the Slapin and Proksch (2008) Wordfish model specifies that xiv is

a Poisson random variable with mean λiv, where logλiv = αi +ψv + θi βv for some unknown text-

specific parameters (αi and θi) and word-specific parameters (ψv and βv). Estimates of θi have been

shown to provide valid estimates of latent positions expressed in speeches (Lowe and Benoit, 2013).

The drawback to unsupervised scaling of this sort, however, is that they provide no guarantee

that the estimated latent trait corresponds to the quantity of interest. We demonstrate this behavior

in Fig. 4f, where we plot the Wordfish scaling estimates of the debate speeches versus the affinity
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scaling estimates. The two methods give similar results (correlation 0.82), but there are also some

notable differences. The government and opposition leaders are not the most extreme examples as

determined by Wordfish, indicating that even in this focused context—a debate over a confidence

motion—the primary dimension of difference is something other than the government-opposition

divide.

10. Discussion. In our application and in others like it, the correct prediction of a class is no

longer a relevant benchmark because the process of producing political text is expected to produce

heterogeneous text within each class. For us, the class—here, voting for or against the confidence

motion, which was perfectly correlated with government or opposition status—is observed and un-

interesting, while the heterogeneity is the primary interest. Despite what would seem obvious from

a measurement model or scaling perspective, however, a standard approach in evaluating machine

learning applications in political science has been predictive accuracy benchmarked against known

classes (e.g. Evans et al., 2007; Yu, Kaufmann and Diermeier, 2008). This focus on estimating correct

classes not only wrongly shifts attention away from the substantively interesting variation in latent

traits, but also may ultimately impair classification generality by encouraging over-fitting to reduce

predictive error.

Our proposed alternative, class affinity scaling, is based on a probability model similar to those

underlying class predictive methods, but allows for mixed class membership. We have shifted focus

from class prediction, something typically uninteresting in the social sciences, to a form of latent

parameter estimation, while retaining the advantages of supervised learning approaches where the

analyst controls the inputs that anchor the model. While there is a strong tradition in some disciplines,

such as political science, of adapting machine learning to produce continuous scales, practitioners

are often unaware of the differences in modeling assumptions between classification and scaling

methods (e.g. Laver, Benoit and Garry, 2003), or they have not fully explored the implications of

these assumptions (e.g. Beauchamp, 2012). We have highlighted the differences and similarities in a

form that encourages future development.

The novelty of our approach is that it provides a statistical foundation for a method to scale an

unlimited number of texts whose positions are unknown, from a small reference set whose positions

are known, with direct quantitifaction of the uncertainty of these estimates. It both updates and ex-

tends the widely used Wordscores approach of Laver, Benoit and Garry (2003), and provides distinct

advantages over related approaches adapted from methods for predicting classes. Relative to dictio-

nary approaches, furthermore, it overcomes the limitations of static word associations by correctly
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learning the relationships and weights of all words to known reference texts, providing a method that

is more contextually appropriate and far more economical.

The relative simplicity of our method makes it amenable to direct mathematical analysis. This sim-

plicity allowed us to draw connections between Naive Bayes classification, dictionary-based scaling,

and a host of other methods. We were further able to exploit the analytic simplicity of the affinity

scaling model to develop an influence measure assessing the sensitivity of the fit, which we then used

to guide our vocabulary selection and to validate our fits to the Dáil debate.

Using our method to explore the nuances of the speeches in the 1991 Dáil confidence motion,

we produced estimates for each speaker that accord with both a qualitative reading of the speech

transcripts and an expert understanding of Irish politics. Our application is a hard domain problem,

where no known lexicographical map exists to differentiate government versus opposition speech

and dictionary-based scaling, even with a dictionary derived from political text, gives unsatisfactory

results. With limited training from the leadership speeches, class affinity scaling is able to adapt to the

context of the debate and give a meaningful scaling. The method has applications far beyond political

text, however, and could be used to score more standard sentiment problems on a continuous scale,

or applied to any other problem for which contrasting reference texts can be identified.
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APPENDIX A: DETECTING INFLUENCE

Table A1 shows the results of applying our influence measure(8) to our pre-filtered document-term

matrix for all 55 documents, grouped by the direction of influence.

TABLE A1
Median and maximum influence (×100) exerted by the most influential words, grouped by direction of influence. Medians

are computed over texts containing the word.

Government Opposition

Word Count Median Max Word Count Median Max

and 55 1.3 2.5 the 55 2.5 4.7
our 49 0.9 2.7 that 55 1.3 3.5
graduate 3 0.8 0.9 to 55 1.2 2.6
deasy 3 0.7 1.6 they 55 1.0 2.6
attribute 1 0.7 0.7 a 55 0.9 1.7
social 30 0.6 8.0 is 55 0.9 1.7
per cent 26 0.6 3.2 not 55 0.7 1.6
corresponding 1 0.6 0.6 people 54 0.7 3.0
nation 12 0.6 1.4 it 55 0.7 1.7
proof 2 0.6 1.0 he 42 0.6 2.0
1987 20 0.5 2.7 at 54 0.5 1.3
economic 33 0.5 2.1 his 43 0.5 1.4
will 55 0.5 1.5 taoiseach 43 0.5 1.3
international 18 0.5 1.1 by 55 0.4 0.7
union 9 0.5 0.9 as 55 0.4 1.2

We can see, for example, that the word type social exhibited influence on 30 speeches. For one of

these speeches, deleting the word social has the affect of shifting the speech’s affinity estimate away

from Government by 0.08; the median shift for the 30 speeches is 0.006. Deleting social shifts the fit

away from Government; equivalently, the appearances of social push the fit towards Government.

We can also see in Table A1 that there are words that a few rare words like attribute and proof have

large influence. These words are not meaningful discriminators on substantive grounds, but they show

up as influential because they only appear once in the reference speeches. The estimated probabilities

for these words are unreliable. Their influence is determined purely by estimation variability. To get

around this, in our final analysis we choose to exclude these words—the hapax legomena—that only

appear once in the reference speeches.

It is possible that Snowball word list could have missed some influential function words, but

inspecting the words in Table 4 and the other words further down in the order, we found that this

was not the case for our application. The only suspicious words are say and said, but in the context

of the debate, it makes sense that these words are pro-Opposition. When the word said gets used,

it is typically used to quote the government (“they said” or “they continue to say”), usually by an

opposition member criticizing the government. Likewise, at first glance it may seem suspicious that

per cent is at the top of the Government list, but in fact this often used to cite national statistics about

the economy and the GDP, using the state of the economy explain the unrest.
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Fig A1: Comparison of mean word influence with word class association measures using the G2

likelihood ratio statistic and Shannon entropy (with log base 2).

Overall, after looking at the most influential words in the two lists, we are comforted that most

words have relatively low influence individually, and that the high-influence words make sense in the

context of the application.

As a final check on our influence measure, we compared other approaches such as measuring the

discrimination of words between our two classes using both likelihood-ratio and entropy measures,

comparing whether our influence statistic simply reflects the uneven distribution of words across the

government and opposition word frequncies in our corpus. Figure A1 plots both the word associa-

tion with the government-opposition classes from the reference texts using the log base 2 Shannon

entropy, as well as the G2 likelihood ratio statistic test of association with the class label. There is no

clear association between words that should be excluded because of their high entropy (near 1.0) or

low association scores (χ2 close to 0). Our measure of influence captures more than this because it is

conditional not just on relative word frequencies but also on how the word’s presence exerts leverage

on the scaled results.

APPENDIX B: ALTERNATIVE FITTING METHOD

An anonymous reviewer suggested we explore fitting the affinity model using the EM-algorithm

instead of the Newton-Raphson procedure described in Sec. 5.1. Indeed, the E- and M-steps for the

model take simple forms. In that procedure, we are given text sequence W ∈ V n and distributions

p1, . . . , pK . The goal is to estimate θ. For i = 1, . . . ,n and k = 1, . . . ,K we introduce the variables

uik = Pr(Ui = k |Wi). In the E-step, we compute an estimate of each uik using the current estimate θ̂t

of θ. This estimate is given by

ût
ik = ∑

v∈V

θ̂t
k pkv

∑
K
l=1 θ̂t

l plv
1{Wi = v}
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In the M-step, we maximize the expected log-likelihood to find an updated estimate θ̂t+1. The com-

ponents of this estimate are given by

θ̂
t+1
k =

∑
n
i=1 ût

ik

∑
K
l=1 ∑

n
i=1 ût

il

For penalized likelihood estimation with smoothing parameter λ, we modify θ̂
t+1
k by adding λ to

the numerator and Kλ to the denominator. The EM fitting procedure initializes θ̂t to some value—

we chose (1/K, . . . ,1/K) in our simulations—then alternates between applying the E-step and the

M-step until convergence.

The combination of one E-step and one M-step is an EM iteration. The time complexity of a single

EM iteration is O(V K), lower than the complexity for a Newton-Raphson iteration, O(V K2). This

does not necessarily translate to a faster fitting procedure, though, because the EM algorithm can

require more iterations to converge. In the context of fitting a mixture model, for example, Lindstrom

and Bates (1988) observed that Newton-Raphson fitting was faster than the EM algorithm in certain

settings.

We compared the two fitting procedures on our data set, using smoothed estimates with λ = 0.5.

We used both EM and Newton-Raphson to scale all 58 Dáil speeches, recording for each the total

computation time and the values of θ̂t as the algorithms progressed. Then, taking θ̂ as the final value

of the Newton-Raphson procedure, we computed the Euclidean distance to the optimum ‖θ̂t− θ̂‖2 for

each legislator and iteration number. Finally, for each algorithm and iteration number, we averaged

the distance values over all speeches.

On average, an Newton-Raphson iteration took about 7.6 times longer than an EM iteration (with a

standard error of 0.2). For a fair comparison between EM and ER, we use “EM iteration equivalents”

so that 1 Newton-Raphson iteration counts for 7.6 EM iteration equivalents.

In Fig. A2, we see that the two fitting procedures require about the same time to converge. The

EM algorithm has faster individual iterations, but on average requires 30–50 steps to converge. The

Newton-Raphson procedure has slower iterations, but only requires 4–5 steps. The total computation

until convergence is comparable for both.

For our application, the two fitting procedures have comparable performance characteristics. How-

ever, the Newton-Raphson procedure computes more than just the estimate θ̂: it also computes the

observed Fisher information matrix (the Hessian of the negative log-likelihood). We require this

matrix to compute the word influence measure from Sec. 6, and if we were not using bootstrap-

based confidence intervals for θ, we would also require this matrix to compute Wald intervals. In

situations when either diagnostics or likelihood-based confidence intervals are required, then, the
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Fig A2: Average Newton-Raphson and EM algorithm performance comparison on the 58 Dáil
speeches. Gray segments indicate 95% confidence intervals.

Newton-Raphson procedure has a clear advantage.

APPENDIX C: SENSITIVITY ANALYSIS

Our procedure has two tuning parameters: λ, for regularizing the affinity estimates; and α, for reg-

ularizing the reference distribution estimates. We set both of these parameters to 0.5, with this value

chosen for its connections to the Jeffreys prior and to bias-reduced estimation (Firth, 1993). Despite

the theoretical appeal of the value 0.5, we wanted to investigate the sensitivity of the estimates to the

choice of its value. Ideally, the estimates should not depend to much on the tuning parameter values.

To investigate the sensitivity, we varied each tuning parameter λ and α separately, choosing 101

evenly-spaced values between 0 and 2. For each choice of the tuning parameter, we computed an

affinity estimate θ̂ for each of the 58 Dáil speeches. Then, we computed the Spearman correlation

between the vector of the 58 values of θ̂1 and the corresponding vector computed with λ = α = 0.5.

Fig. A3 plots the results. In this figure, we can see that as λ and α varied, the Spearman correlations

ranged between 0.996 and 1.000. The rank order of the legislator positions were nearly identical

for all choices of the tuning parameters we tried. The results in our application are robust to tuning

parameter selection.
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Fig A3: Spearman correlation of the estimates of θ̂1 for the 58 Dáil speeches from tuning parameters
λ = 0.5 and α = 0.5 with the estimates when the affinity smooth λ and the reference distribution
smooth α vary.

ADDRESSES:

OSCAR HEALTH, 295 LAFAYETTE ST, 6TH FLOOR, NEW YORK, NY 10012;

DEPARTMENT OF METHODOLOGY, LSE, LONDON WC2A 2AE, UK

E-MAIL: pperry@hioscar.com

kbenoit@lse.ac.uk

mailto:pperry@hioscar.com
mailto:kbenoit@lse.ac.uk

	Introduction
	Scaling with a classification method
	Scaling with dictionaries
	The affinity model
	Estimating affinities
	Estimating affinity vectors
	Estimating reference distributions

	Vocabulary diagnostics and selection
	Uncertainty quantification
	Results
	Connections to other methods
	Dictionary methods
	Wordscores
	Support vector machines and logistic regression
	Topic models
	Unsupervised methods

	Discussion
	References
	Detecting influence
	Alternative fitting method
	Sensitivity analysis
	Author's addresses

