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Who will celebrate?

Sources: youtube.com,EMAJ Magazine,youfrisky.com,Bailiwick Express
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Who will cry?

Sources: youtube.com,pinterest,BBC,Daily Mail
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Before the tournament starts:

Sources: dfb.de, kicktipp.de

Sources: duda.news, welt.de
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How can the prediction of a major
football tournament be done a bit

more sophisticated?
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Theoretical Background

For a general summary, see, for example:

Groll, A. and G. Schauberger (2019). Prediction of Soccer Matches. Wiley
StatsRef: Statistics Reference Online, 1-7.
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Part I: Regression-based Methods
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Model for international football tournaments

yijk ∣x ik ,x jk ∼ Pois(λijk) i , j ∈ {1, . . . ,n}, i ≠ j

λijk = exp (β0 + (x ik − x jk)
⊺β)

n: Number of teams

yijk : Number of goals scored by team i against opponent j at tournament k

x ik , x jk : Covariate vectors of team i and opponent j varying over tournaments

β: Parameter vector of covariate effects
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Regularized estimation

Maximize penalized log-likelihood

lp(β0,βββ) = l(β0,βββ) − ξJ(βββ)

= l(β0,βββ) − ξ
p

∑
i=1

∣βi ∣ ,

with lasso penalty term (Tibshirani, 1996):

J(βββ) =
p

∑
i=1

∣βi ∣ .

The model can be estimated with the R-package glmnet (Friedman et al., 2010).

Versions used for: EURO 2012 (Groll and Abedieh, 2013); World Cup 2014 (Groll
et al., 2015); EURO 2016 (Groll et al., 2018)

A. Groll (TU Dortmund) Modeling and Prediction of Football Data 9 / 45



Regularized estimation

Maximize penalized log-likelihood

lp(β0,βββ) = l(β0,βββ) − ξJ(βββ)

= l(β0,βββ) − ξ
p

∑
i=1

∣βi ∣ ,

with lasso penalty term (Tibshirani, 1996):

J(βββ) =
p

∑
i=1

∣βi ∣ .

The model can be estimated with the R-package glmnet (Friedman et al., 2010).

Versions used for: EURO 2012 (Groll and Abedieh, 2013); World Cup 2014 (Groll
et al., 2015); EURO 2016 (Groll et al., 2018)

A. Groll (TU Dortmund) Modeling and Prediction of Football Data 9 / 45



Regularized estimation

Maximize penalized log-likelihood

lp(β0,βββ) = l(β0,βββ) − ξJ(βββ)

= l(β0,βββ) − ξ
p

∑
i=1

∣βi ∣ ,

with lasso penalty term (Tibshirani, 1996):

J(βββ) =
p

∑
i=1

∣βi ∣ .

The model can be estimated with the R-package glmnet (Friedman et al., 2010).

Versions used for: EURO 2012 (Groll and Abedieh, 2013); World Cup 2014 (Groll
et al., 2015); EURO 2016 (Groll et al., 2018)

A. Groll (TU Dortmund) Modeling and Prediction of Football Data 9 / 45



Part II: Ranking Methods
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Independent Poisson ranking model

Yijm ∼ Pois(λijm) ,

λijm = exp (β0 + (ri − rj) + h ⋅ 1(team i playing at home))

n: Number of teams

M: Number of matches

yijm: Number of goals scored by team i against opponent j in match m

ri , rj : strengths / ability parameters of team i and team j

h: home effect; added if team i plays at home
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Independent Poisson ranking model

Likelihood function:

L =
M

∏
m=1

⎛

⎝

λ
yijm
ijm

yijm!
exp(−λijm) ⋅

λ
yjim
jim

yjim!
exp(−λjim)

⎞

⎠

wtype,m ⋅wtime,m

,

with weights

wtime,m(tm) = (
1
2
)

tm

Half period

and
wtype,m ∈ {1,2.5,3,4} (depending on type of match) .

Different extensions, for example, bivariate Poisson models. Ley et al. (2018)
show that bivariate Poisson with Half Period of 3 years is best for prediction.
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Part III: Random Forests
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Random Forests

● introduced by Breiman (2001)

● principle: aggregation of (large) number of classification / regression trees

Ô⇒ can be used both for classification & regression purposes

● final predictions: single tree predictions are aggregated, either by majority
vote (classification) or by averaging (regression)

● feature space is partitioned recursively, each partition has its own prediction

● find split with strongest difference between the two new partitions w.r.t.
some criterion

● Observations within the same partition as similar as possible, observations
from different partitions very different (w.r.t. response variable)

● a single tree is usually pruned (lower variance but increases bias)

● visualized in dendrogram
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Dendrogram of regression tree
Rank
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Exemplary regression tree for FIFA World Cup 2002 – 2014 data using the
function ctree from the R-package party (Hothorn et al., 2006). Response:
Number of goals; predictors: only FIFA Rank and Oddset are used.
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Random Forests

● repeatedly grow different regression trees

● main goal: decrease variance

Ô⇒ decrease correlation between single trees.

● Ô⇒ two different randomisation steps:

1) trees are not applied to the original sample but to bootstrap samples
or random subsamples of the data.

2) at each node a (random) subset of the predictors is drawn that are
used to find the best split.

● by de-correlating and combining many trees Ô⇒ predictions with low bias
and reduced variance
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Random Forests for football

● response: metric variable Number of Goals

● predefined number of trees B (e.g., B = 5000) is fitted based on (bootstrap
samples of) the training data

● prediction of new observation: covariate values are dropped down each of the
regression trees, resulting in B predictions Ô⇒ average

● use predicted expected value as event rate λ̂ of a Poisson distribution Po(λ)

● 2 slightly different variants:

1) classical RF algorithm proposed by Breiman (2001) from the R-package
ranger (Wright and Ziegler, 2017)

2) RFs based conditional inference trees: cforest from the party package
(Hothorn et al., 2006)
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Application to FIFA World Cups

A. Groll (TU Dortmund) Modeling and Prediction of Football Data 18 / 45



Covariates
Data basis: World Cups 2002–2014

● Economic Factors:
GDP per capita, population

● Sportive Factors:
Winning probs by bookmakers (Oddset), FIFA rank

● Home advantage:
host of the world cup, same continent as host, continent

● Factors describing the team’s structure
(Second) Maximum number of teammates, average age, number of
Champions League & Europa League players, number of players abroad

● Factors describing the team’s coach
age, nationality, tenure

All variables are incorporated as differences between the team whose goals
are considered and its opponent!
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Extract of the design matrix

FRA 0:0 URU
URU 1:2 DEN

Team Age Rank Oddset . . .
France 28.3 1 0.149 . . .
Uruguay 25.3 24 0.009 . . .
Denmark 27.4 20 0.012 . . .
⋮ ⋮ ⋮ ⋮ ⋱

Goals Team Opponent Age Rank Oddset ...
0 France Uruguay 3.00 -23 0.140 ...
0 Uruguay France -3.00 23 -0.140 ...
1 Uruguay Denmark -2.10 4 -0.003 ...
2 Denmark Uruguay 2.10 -4 0.003 ...
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
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Comparison of predictive performance: WC 2002-2014 data

1. Form a training data set containing 3 out of 4 World Cups.

2. Fit each of the methods to the training data.

3. Predict the left-out World Cup using each of the prediction methods.

4. Iterate steps 1-3 such that each World Cup is once the left-out one.

5. Compare predicted and real outcomes for all prediction methods.

We combine both the random forest and the LASSO with the ability
estimates from the ranking method, calling those hybrid models!
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Prediction of match outcomes

● true ordinal match outcomes: ỹ1, . . . , ỹN with ỹi ∈ {1,2,3}, for all matches N
from the 4 World Cups.

● predicted probabilities π̂1i , π̂2i , π̂3i , i = 1, . . . ,N,

● Let G1i and G2i denote the goals scored by 2 competing teams in match i

Ô⇒ compute π̂1i = P(G1i > G2i), π̂2i = P(G1i = G2i) and π̂3i = P(G1i < G2i)

based on the corresponding Poisson distributions G1i ∼ Po(λ̂1i) and
G2i ∼ Po(λ̂2i) with estimates λ̂1i and λ̂2i (Skellam distribution)

● benchmark: bookmakers Ô⇒ compute the 3 quantities π̃ri = 1/oddsr ,
r ∈ {1,2,3}, normalize with ci ∶= ∑

3
r=1 π̃ri (adjust for bookmakers’ margins)

Ô⇒ estimated probabilities π̂ri = π̃ri/ci
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Prediction of match outcomes

3 Performance measures:

(a) multinomial likelihood (probability of correct prediction): for single match
defined as

π̂
δ1ỹi
1i π̂

δ2ỹi
2i π̂

δ3ỹi
3i ,

with δri denoting Kronecker’s delta

(b) classification rate: is match i correctly classified using the indicator function

1(ỹi = argmax
r∈{1,2,3}

(π̂ri))

(c) rank probability score (RPS; explicitly accounts for the ordinal structure):

1
3 − 1

3−1
∑
r=1

(
r

∑
l=1
π̂li − δl ỹi)

2
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Prediction of match outcomes

Likelihood Class. Rate RPS

Hybrid Random Forest 0.419 0.556 0.187

Random Forest 0.410 0.548 0.192

Ranking 0.415 0.532 0.190

Lasso 0.419 0.524 0.198

Hybrid Lasso 0.429 0.540 0.194

Bookmakers 0.425 0.524 0.188

Comparison of different prediction methods for ordinal outcome based on
multinomial likelihood, classification rate and ranked probability score (RPS)
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Prediction of exact numbers of goals

● let now yijk , for i , j = 1, . . . ,n and k ∈ {2002,2006,2010,2014}, denote the
observed number of goals scored by team i against team j in tournament k

● ŷijk the corresponding predicted value

● 2 quadratic errors: (yijk − ŷijk)
2 and ((yijk − yjik) − (ŷijk − ŷjik))

2
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Prediction of exact numbers of goals

Goal Difference Goals

Hybrid Random Forest 2.473 1.296

Random Forest 2.543 1.330

Ranking 2.560 1.349

Lasso 2.835 1.421

Hybrid Lasso 2.809 1.427

Comparison of different prediction methods for the exact number of goals and the
goal difference based on MSE
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Prediction of FIFA World
Cup 2018
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Variable importance
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Winning probabilities

Round Quarter Semi Final World Oddset
of 16 finals finals Champion

1. ESP 88.4 73.1 47.9 28.9 17.8 11.8
2. GER 86.5 58.0 39.8 26.3 17.1 15.0
3. BRA 83.5 51.6 34.1 21.9 12.3 15.0
4. FRA 85.5 56.1 36.9 20.8 11.2 11.8
5. BEL 86.3 64.5 35.7 20.4 10.4 8.3
6. ARG 81.6 50.5 29.8 15.2 7.3 8.3
7. ENG 79.8 57.0 29.8 15.6 7.1 4.6
8. POR 67.5 46.1 19.8 7.3 2.5 3.8
9. CRO 65.9 30.8 15.6 6.0 2.2 3.0
10. SUI 58.9 30.6 13.1 5.6 2.2 1.0
11. COL 79.2 33.1 14.0 5.7 2.1 1.8
12. DEN 59.0 26.1 12.4 4.8 1.7 1.1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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Most probable group stage
Group A Group B Group C Group D
28.7% 38.5% 31.5% 30.7%

1. URU 1. ESP 1. FRA 1. ARG

2. RUS 2. POR 2. DEN 2. CRO

KSA MOR AUS ICE

EGY IRN PER NGA

Group E Group F Group G Group H
29.0% 29.9% 38.1% 26.5%

1. BRA 1. GER 1. BEL 1. COL

2. SUI 2. SWE 2. ENG 2. POL

CRC MEX PAN SEN

SRB KOR TUN JPN
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Most probable knockout stage
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Winning probabilities over time
Time course of the winning probabilities for the nine (originally) favored teams:
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Performance I
Likelihood Class. Rate RPS

Hybrid Random Forest 0.440 0.609 0.188

Random Forest 0.433 0.609 0.191

Lasso 0.424 0.547 0.207

Hybrid Lasso 0.434 0.609 0.201

Ranking 0.423 0.578 0.197

Bookmakers 0.438 0.562 0.194

Goal Difference Goals

Hybrid Random Forest 1.181 2.113

Random Forest 1.209 2.177

Lasso 1.216 2.333

Hybrid Lasso 1.187 2.270

Ranking 1.253 2.171
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Performance II
Final standing in forecast competition fifaexperts.com (> 500 participants):
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Performance III
Final standing in forecast competition Kicktipp (with colleagues):
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Performance IV

Final standing in WC-forecast competition from Prof. Claus Ekstrøm :
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Performance V

Betting strategies:

For every match i and each of the possible three outcomes r ∈ {1,2,3} calculate
expected return:

E [returnri ] = π̂ri ∗ oddsri − 1 .

Choose outcome with highest expected return and only place bet if expected
return is positive:

max
r∈{1,2,3}

E [returnri ] > τ = 0 .

Koopman and Lit (2015): use different values of the threshold τ > 0 Ô⇒ overall
mean return could be increased.

Boshnakov et al. (2017): use varying stake sizes based on the Kelly criterion
(Kelly, 1956). Ô⇒ determines optimal stake for single bets in order to maximize
the return considering size of the odds and the winning probability.
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Performance V

Betting strategies:
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Recent extensions:

●more “hybrid” features

● XGBoost
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Recent extensions

For the prediction of the UEFA EURO 2020 (Groll et al., 2021), beside the
current ability ranking based on historic matches (Ley et al., 2018), we included
two additional hybrid features:

● bookmaker consensus abilities (Leitner et al., 2010)

● plus-minus player ratings (Hvattum & Gelade, 2021)

Moreover, we compared the random forest with an extreme gradient boosting
approach (XGBoost; Chen and Guestrin, 2016).
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Summary
Regarded models & predictive performance:

● (Regularized) regression approaches vs. random forests vs. ranking methods

● random forests & ranking methods perform pretty good (almost as good as
bookmakers)

● Ô⇒ combine random forests & ranking methods to hybrid random forest

● Ô⇒ combination outperforms bookmakers (on FIFA WC 2002 – 2014 data)

FIFA WC 2018 prediction:

● Spain favorite with 17.8%, closely follow by Germany (17.1%); then: Brazil,
France, Belgium (before the tournament start)

● Performance: Germany & Spain already dropped out; but: very good
performance on average

● Conclusion: single match outcome / tournament winner almost impossible to
predict, but in general very adequate model
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European champion 2024?

Sources: gifrific.com, dfb.de

Thank you for your
attention!

Link arXiv Working Paper: https://
arxiv.org/abs/2106.05799

and

Blog with interactive graphs:
https://www.zeileis.org/news/
euro2020/

https://arxiv.org/abs/2106.05799
https://arxiv.org/abs/2106.05799
https://www.zeileis.org/news/euro2020/
https://www.zeileis.org/news/euro2020/
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Alternative approach

Copula regression:

● van der Wurp, H., A. Groll, T. Kneib, G. Marra, and R. Radice (2020)
Generalised joint regression for count data: a penalty extension for
competitive settings. Statistics and Computing 30, 1419–1432.

● van der Wurp, H. and A. Groll (2023a) Introducing LASSO-type penalisation
to generalised joint regression modelling for count data. Advances in
Statistical Analysis 107, 127–151.

● van der Wurp, H. and A. Groll (2023b). Using (copula) regression and
machine learning to model and predict football results in major European
leagues. Statistica Applicata. To appear.
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Sources: For The Win - USATODAY.com, Tadias Magazine

Similar model used for
the FIFA Women’s World
Cup 2019 in France

(Working paper on arXiv: https://arxiv.
org/pdf/1906.01131.pdf)

(Blog: http://bit.ly/fifa-women-2019)

Source: The New Yorker
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Winning probabilities
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Conditional winning probabilities
Winning probabilities conditional on reaching the single stages of the tournament
for the five favored teams:
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Winning probabilities after group stage
Quarter Semi Final World

finals finals Champion

1. ESP 88.2 61.1 42.2 23.7
2. BRA 79.9 51.2 35.6 21.4

3. BEL 85.1 40.9 24.1 13.4

4. FRA 63.4 43.6 22.1 12.2

5. ENG 71.6 45.4 20.1 9.6
6. SUI 60.6 24.1 9.7 3.6

7. CRO 56.1 20.8 10.2 3.6
8. ARG 36.6 21.6 7.0 2.7
9. DEN 43.9 15.2 6.8 2.4

10. POR 55.1 19.0 5.5 2.1
11. COL 28.4 15.9 5.2 1.8

12. SWE 39.4 14.7 5.1 1.5
13. URU 44.9 15.8 4.0 1.4
14. MEX 20.1 4.7 1.2 0.3

15. RUS 11.8 2.8 0.7 0.1
16. JPN 14.9 3.1 0.6 0.1
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