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Motivation: phenomena of contagion in a network

Features:
- Continuous-time model
- The contagion process evolves in a random environment (set of observable,
simulable processes)
- The environment also may be affected by the contagion process.
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Contagion processs:

Entity i 0 ** 1

survival default

i ∈ N countable set.

We propose a model where the contagion processs may ”contaminate” its
environment.

A Non-Markov Approach for the Evolution of Contagion in a Network
D. Coculescu, G. Visentin Working Paper, University of Zürich, 2022.

Contagion: The transition of one debtor (from state 0 to state 1) impacts the
transition probabilities of the surviving debtors.
Two kinds of contagion:

direct: a default event directly impacts the intensities surviving debtors in the
system; no impact on the environment.
indirect (overspilling): a default event is affecting the environment. Indirectly,
the intensities surviving debtors in the system are also impacted.
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Basic notions and notations
(Ω,G,F = (Ft)t≥0,P) filtered probability space (usual assumptions).
F synthesises the relevant information about the environment of the
contagion processs.
We consider n entities with transition times τ(k), k ∈ N := {1, ..., n}.
The global information GN = (GNt )t≥0 is:

GNt = Ft ∨
k∈N

σ(t ∧ τ(k)).

The default indicator process Yt = (Yt(1), ...,Yt(n)):

Yt(k) = 1{τ(k)≤t}

The intensities of the transition times λNt (k) such that the following are
martingales:

Yt(k)−
∫ t∧τ(k)

0
λNs (k)ds, t ≥ 0
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Models with interacting intensities
Conditionally on F∞, the default indicator process Y is an inhomogeneous
Markov chain, with state space I = {0, 1}n.
Contagion is explicitly modelled as being driven by the process Y : the
transition rates of Y from state x to state y at time t are of the form:

qt(x , y) =

{
1{x(k)=0}ft(x , y) if y = xk for some k ∈ N
0 else.

where:
xk ∈ I is obtained from x ∈ I by flipping the k th coordinate.
(ft(x , y))t≥0 is an F adaptated process (for fixed x , y ∈ I ).

Therefore, the default intensity of k th obligor is modeled as a function of the
default process:

λt(k) = qt(Yt ,Y
k
t ).

Advantages: Markov chain techniques are available for analysis and simulation,
can be used to price complex products as CDOs
Disadvantage: Neglects the feedback form contagion in the real economy.

5 / 30



Motivation
Contagion with spillover risk

Survival probabilities

Some related literature

See: Kusuoka (1999), Davis and Lo (2001), Jarrow and Yu (2001), Bielecki,
Rutkowski (2003), Frey and Backhaus (2008,2010), Bielecki, Crépey,
Jeanblanc (2007), Rutkowski (2003), Herbertsson (2007) and Herbertsson
and Rootzén (2008)

Other existing models are variants of the above framework:
state 1 is not absorbing: Giesecke and Weber (2004,2006).
more states: I = {1, ...,m}n credit migration model by Davis,
Esparragoza-Rodriguez (2007).
Frailty models: the filtration F is (partially) unavailable for pricing
(unobserved factors), so that filtering techniques are used: Frey and Schmidt
(2009).
More than one default can possibly occur at a time: Bielecki, Cousin, Crépey,
Herbertsson (2011).

See also the survey paper by Bielecki, Crépéy, Herbertsson (2011).

Related work, not intensity based: El Karoui, Jeanblanc, Jiao (2015).
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

A model with overspilling contagion

2-step construction:

1. We built the model under a measure P0 that ensures::
- conditional independence;
- no contagion.

2. We shape the wished contagion mechanism (direct+indirect) via a suitable
change of the probability measure PN ∼ P0.
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

Step 1. The model under P0

Generalisation of the model by Lando (1998)

(Ω,G,F,P0)

Γ(i), i ∈ N , satisfies:
Γ0(i) = 0 a.s. and limt→∞ Γt = +∞ a.s.;
F adapted, RCLL, increasing process.

e(i), i = 1, ..., n i.i.d.
Exp(1), independent of F∞.

We define for i = 1, ..., n:

τ(i) = inf {t ≥ 0; Γt(i) ≥ e(i)} .

C. (2010)
Aksamit, Choulli, Jeanblanc (2021)
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

Step 1. (continued)

Working example:

For all i ∈ N , the process Γ(i) satisfies:

Γt(i) =

∫ t

0
αs(i)ds + ∆ΓT (i)(i)1{T (i)≤t},

T (i) is a totally inaccessible F stopping time admiting an intensity (γt(i)).
It follows that the following are (F,P0) orthogonal martingales:

nt(i) := 1{T (i)≤t} −
∫ t∧T (i)

0
γs(i)ds.

All processes γ and α are considered bounded.

9 / 30



Motivation
Contagion with spillover risk

Survival probabilities

Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

Azéma supermartingales Z (k) under P0

Azéma’s supermartingale for τ(i), relative to P0 and F is defined as:

Zt(i) := P0(τ(i) > t|Ft) = e−Γt(i).

Proposition

Zt(k) = Et(ν(k))× exp

(
−
∫ t

0
λs(k)ds

)
,

where νt(k) := −
∫ t

0 gs(k)dns(k); gt(k) := pt(k)eΓt−(k)1{T (k)≥t} and with λ(k),
the intensity of τ(k), being:

λt(k) := αt(k) + gt(k)γs(k)︸ ︷︷ ︸
:=βt(k)

.
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

Survival probabilities
The probability P0 of survival in group C ⊂ N and at time t is:

P0(τ(k) > t, ∀k ∈ C) = E0

[∏
k∈C

Zt(k)

]

= E0

[
exp

(
−
∑
k∈C

∫ t

0
λs(k)ds

)∏
k∈C

Et(ν(k))

]
(1)

= ĒC
[
e−

∫ t
0 λs (C)ds

]
= ĒC [`t ] , (2)

` satsfies: d`t = −`tλt(C)dt; and ĒC is the expectation under P̄C (see below).

Definition (The default-adjusted probability measure)

For C ⊂ N , we define the following auxiliary probability measure P̄C :

dP̄C
dP0

∣∣∣
GNt

=
∏
k∈C

Et(ν(k)), t ≥ 0.
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

The structure of the information

With a subset C ⊂ N , we associate a filtration GC :

GCt = Ft ∨k∈C σ(t ∧ τ(k)),

i.e., the progressively enlarged filtration that makes all τ(k), k ∈ C stopping
times.

Notation. For two filtrations F ⊂ G and a probability P, we write F P
↪→ G

whan F martingales remain G martingales under the probability P.
Remark. For any C ⊂ N and k ∈ C we have the following property:

F P0

↪→ GC P0

↪→ GN .

F
P̄C
↪→ GC

P̄C
↪→ GN .
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

The decomposition of the default times τ(k)

Proposition

Consider k ∈ C. We define the GC stopping times τA(k) and τB(k):

τA(k) : = τ(k)1{τ(k) 6=T (k)} +∞1{τ(k)=T (k)}

τB(k) : = τ(k)1{τ(k)=T (k)} +∞1{τ(k) 6=T (k)},

so that:
τ(k) = τA(k) ∧ τB(k).

Then:
the (GC ,P0) intensity of τA(k) is αt(k)1{τ(k)>t};

the (GC ,P0) intensity of τB(k) is βt(k)1{τ(k)>t}.
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

Example 1.
Suppose that:

τ(k) =

{
T 0(k), P(τ(k) = T 0(k)|Ft) = 1− p

T (k), P(τ(k) = T (k)|Ft) = p

• T 0(k) ∼ exp(α) firm-specific factor, independent from F;
• T (k) ∼ exp(γ) macro factor, F stopping time.

Then:
(F,P0)-survival process of entity k is

P0(τ(i) > t|Ft) = (1− p)e−αt + p1{T(k)>t}

the (Gk ,P0)-intensity of τ(k) is:

λt(k) = α + 1{T (k)≥t}
p(γ − α)

p + (1− p)e−αt︸ ︷︷ ︸
=βt(k)
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

The main martingales

We summarise the important (GC ,P0) martingales:

mt(k) = 1{τA(k)≤t} −
∫ t∧τ(k)

0
αs(k)ds, t ≥ 0

nt(k) = 1{T (k)≤t} −
∫ t∧T (i)

0
γs(k)ds, t ≥ 0.
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

Creating a group C ⊂ N of contagious debtors

We consider filtered probability spaces

(Ω,G,GN ,PC), C ⊂ N

corresponding to different groups C of contagious debtors.

Aim:

We want that for i ∈ N τ(i) has a (GN ,PC)-intensity:

λCt (i) = λt(i) +
∑
j∈C

ξ
X (j)
t (i , j)1{τ(j)<t} for i ∈ N .

with X (j) = A1{τ(j)=τA(j)} + B1{τ(j)=τB (j)}, which is a GNτ(j) measurable random
variable; X (j) = A if the default j is producing a direct contagion, while X (j) = B
will indicate that we have indirect contagion.
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

We introduce the impact matrices:
(φAt (i , j))(i,j)∈N 2 direct contagious impact of debtor j on debtor i .

(φBt (i , j))(i,j)∈N 2 indirect contagious impact.
with components being positive, bounded and F-predictable processes.
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

Creating a group C ⊂ N of contagious debtors

Proposition
Let C ⊂ N . Let us introduce for all i ∈ C the predictable processes:

ACt (i) :=
1

αt(i)

∑
j∈C

φAt (i , j)1{τA(j)<t}, t ≥ 0 (3)

BCt (i) :=
1

γt(i)

∑
j∈C

φBt (i , j)1{τB (j)<t}, t ≥ 0 (4)

and define the family of probability measures (PC), C ⊂ N :

dPC

dP0

∣∣∣
GNt

= DCt :=
∏
i∈N

Et
(∫ t

0
ACs (i)dms(i)

)∏
i∈N

Et
(∫ t

0
BCs (i)dns(i)

)
.

Then the default time τ(i), i ∈ N has the (GN ,PC) intensity λC(i) given by

λCt (i) = λt(i) +
∑
j∈C

(
φAt (i , j)1{τA(j)<t} + gt(i)φ

B
t (i , j)1{τB (j)<t}

)
= λt(i) +

{
αt(i)A

C
t (i) + βt(i)B

C
t (i)
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Step 1. The model under P0 : conditional independence
Step 2. Introducing contagion

Remark

Under PC , some defaults may modify the evolution of the environment: the
(GN ,PC)-intensity of a stopping time T (i), i ∈ N is

γ(i)[1 + BCt (i)],

i.e., has upward jumps at the default times j ∈ C that satisfy τ(j) = τB(j). Or,
T (i)i∈N are F-stopping times hence they are elements of the environment of the
contagion processs.
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Survival probabilities

Assumptions:
Time 0, all debtors are in state 0 and contagious.
Consequenly, we work under (Ω,F ,GN ,PN ).

Notations:

λt(C) :=
∑
k∈C

λt(k); ΦA
t (C, j) :=

∑
k∈C

φAt (k , j); etc.

In the next theorem, C,D ∈ N are fixed, with C ∩ D = ∅ and S := N − C.
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Theorem (Part 1)

PN (τ(i) > t,∀i ∈ C ; τB(j) ≤ t,∀j ∈ D) = ĒC[`
S|D
t

∏
j∈D

pt(j)1{T (j)≤t}],

where `S|D satisfies:

d`
S|D
t = −`S|Dt− λt(C)dt (5)

−
∑

j∈S−D

(
`
S|D
t− − `

S−j|D
t− − `S|D∪jt− pt(j)1{T (j)<t}

)
ψA(C ∪ D, j)dt

+
∑
j∈S

1{T (j)<t}

(
1{j∈D}`

S|D
t− + 1{j∈S−D}`

S|D∪j
t− pt(j)

)∑
k∈N

φBt (k, j)

γt(k)
dnt(k).

`
S|D
0 = 1. Above, we have denoted:

ψA(k, j) :=

{
φA(k , j) k ∈ S − D
φA(k , j)1{T (k)>t} k ∈ D.
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Theorem (Part 2)

In particular, denoting `S := `S|∅, the survival probability in group C satisfies:

PN (τ(k) > t, ∀k ∈ C) = ĒC
[
`St
]
,

with:

d`St =−

`St−λt(C) +
∑
j∈S

(
`St− − `

S−j
t− − `

S|j
t− pt(j)1{T (j)<t}

)
φA(C, j)

 dt

+
∑
j∈S

1{T (j)<t}`
S|j
t− pt(j)

∑
k∈N

φBt (k , j)

γt(k)
dnt(k) (6)

`S0 =1.
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Recursive procedure for computing `S
∗
, S∗ ⊂ N

If card(S∗) = s, are necessary iterations k = 0, 1, · · · , s of the type:

k. For any S ⊂ S∗ with card(S) = k and for any D ⊂ S, we compute `S|D, in
the decreasing order of the cardinality of D.

There are
(
n
k

)
subsets of S∗ having exactly k elements; each such subset

having 2k different subsets.
Therefore at the k th iteration, we need to solve

(
n
k

)
2k equations of the type

(5).
For solving these equations, the quantities obtained at step k − 1 are needed.
Overall

s∑
k=0

(
s

k

)
2k = 3s

equations of the type (5) need to be solved.

23 / 30



Motivation
Contagion with spillover risk

Survival probabilities

Particular cases:

1. If φA ≡ 0 and φB ≡ 0 (no contagion), then PC = P0 and:

d`∅t = −`∅t λt(C)dt

2. If p(i) ≡ 0 for all i ∈ N (i.e., there is no impact of the contagion processs on
its environment), then all τ(i), i ∈ N avoid the F stopping times. We recover
in this way a Markovian framework where the transition rate at time t from
state x ∈ {0, 1}n to state y ∈ {0, 1}n is:

qt(x , y) =

{
λt(k) +

∑
j∈N φ

A
t (k , j)x(j) if for some k ∈ N : y = xk and x(k) = 0

0 else,

where, as in the previous section, xk ∈ {0, 1}n is obtained from x ∈ I by
flipping the k th coordinate, x(k).
We observe that P̄C = P0 and (6) becomes:

d`St =− `St
{
λt(C) + φAt (C,S)

}
dt +

∑
j∈S

`S−jt φAt (C, j)dt. (7)
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Particular cases:

3. If φA = 0 and φB 6= 0 (i.e., there is only indirect contagion), then:

d`St =− `St−λt(C)dt +
∑
j∈S

1{T (j)<t}`
S|j
t− pt(j)

∑
k∈N

(
φBt (k, j)

γt(k)

)
dnt(k).
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Example 2. Numerical application

N = {1, ..., 5}, homogeneous entities
T (k) ∼ Exp(γ), γ = 0.2
αt(1) = ... = αt(5) = Ψt that follows

dΨt = a(b −Ψt)dt + σ
√

ΨtdWt

ηt(1) = ...ηt(5) = η = 0.25, ∀t
The hazard process of the default time τ(k) is therefore

Γt(k) =

∫ t

0
Ψsds + η1T(k)≤t

Impact matrices:
ΦA

t (i , j) = 0.2 ΦB
t (i , j) = 0.2
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Simulation results
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Simulation results

Solid blue: Monte Carlo mean estimator, the blue shaded areas correspond to different
levels of confidence for the mean estimator: 50% , 75% , 99%.
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Simulation results
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Thank you for your attention!
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