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Risk models and ruin concept

Surplus of insurance portfolio given by process X = (X3)¢>0

Determine:

time and probability of ruin .. .classical risk measure
(indication of problems with liquidity)

T=inf{t >0 ]| X; <0}
Y(E)=P(r<oco | Xg=21a), Y(x, T)=P(r <T|Xo=1x)

or in general Gerber-Shiu functions:

- —§
9(w) =By (7 Tw(Xr, 1Xr]) T r o))
w ... function of time of, deficit at and surplus prior to ruin

= allows for mutual analysis of risk relevant quantities

(Gerber & Shiu 1998-classical, 2005-renewal)
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Classical risk or Cramér-Lundberg model

Use X = (Xt)tZO of the form

N
Xp=x+ct—» Vi t>0
k=1

Ingredients:
» deterministic initial capital x > 0 and premium rate ¢ > 0

» counting process N = (N¢);>0 homogeneous Poisson process
with intensity A > 0

> claims {Vieen, Vi 4 Fy with Fy(0) = 0, E(Y}) =

» crucial assumption: N and {Y}} are independent

(Lundberg 1903, Cramér 1955, net profit condition: ¢ > Au)
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Asymptotic behaviour of ruin probability
Classical results depend on nature of claims
» light-tailed claims (35 > 0 with E[e*¥1] < c0)
lim ef®y(z) = C

T—00

with R > 0s.t. A(E[e] - 1) —cR =0

> heavy tailed claims (if Fi(z) = - [7 (1~ Fy(y))dy € S)




Excursion: reinsurance control
Goal: minimize penalty function

®(a) = inf ©*() = inf By |0 w(X2_, |X2))
uUe T T

uel
t N
X/ == —I—/ c(ug)ds — Zr(Yi,uTi)
0 i=1

Control by dynamic reinsurance, where

» parametrized retention function

r:[0,00) x U — [0,00) with0 < r(y,u) <y

» admissible controls

U= {u=(ut)i>o | ur € U and u is F* previsible}

(Preischl & Th. 2019)
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HJB-equation:

uelU

p(z,u)
0= inf {c(u>f’<x> — (04 N () + A / fa = r(y,u) dFy (y)

(z,u)

+ A / w(z, r(y,u) — x) dFy(y)}
P
Operator for uniqueness:

Gf () = inf {7 FOXR )T pr, arpy] + B [T (X, X0, D)1 g1y sy

+E, [e*‘;T;w(O, 0)]1{T1>T;}] } ... contraction on C %[0, 00)

Theorem

In C**[0,00), ® is unique fixed point of G and unique positive, (Lipschitz)
continuous solution to HJB-equation that is not greater than w(0,0).
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Why do we need more general processes?

\4

numerical approach via policy iteration:

fix ug, compute V¥ — improve control, fix u;, compute V¥ ...

Markovian controls u; = u(X;_) lead to controlled processes of
PDMP type

on the way we need classical cost functions

vi(z) = B, [ / (XYt + eI (X M)
0
also here v(0) is crucial

use MC simulations for approximation of v%(0)
(— approximate (G"*)" f(0) with MC)
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[llustration of results

Fy(x)=1—(1+2)7% 6 =0.1 and penalty we(z,y) = min{10'°, (x 4 0.5)(y + 1)?}
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Need for model extensions

» analyze risk models in unified framwork

» keep Markov property

(at least by adding not too many components)
» allow for flexible behaviour between jumps

» include more complex jumps

(intensity and jump size distributions)

» incorporate control opportunities
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Piecewise deterministic Markov processes

. introduced as finite variation sample path alternative to diffusions
Construction of X = (X¢)¢>0:

» state space £ = {(k,y) |k € Kandy € Ej} (X finite set, £}, C R%)
> o= {¢k} ... deterministic trajectories (¢, specified by vector field X} on Ej)

X = (k,d(v,1), Xo=(ky), Fon(y:1t) = gr(én(y.1))
» A= {\i}... jump intensities
time of 1st jump T1 & Py o (T1 > t) = e Jo Ak (@k(v,))ds
» Q:(E,E)—[0,1]... jump kernel
X1, % Qér(y, T1), )

» piecewise construction (starting anew in Xr,)

(PDMPs introduced by Davis 1984)
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Additional features

» active boundary I': points at boundary of E which can be reached
along ODE paths (good for bing-bang controls)

» at time t*(z) = inf{t > 0| ¢x(t,{) € T'} (z = (k,¢)) force jump

d —rt s))ds
Ty & Po(Ty > t) = e Jo wOnleolds g, oy

» embedded pure jump Markov process 7 with

= (Xr,,n) forT <t<T,41

(something to be exploited later)
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Sometimes easier to deal with generator of X

Theorem (Davis 1984/92)

Let X be a PDMP with E,[N;] < oo for allt > 0, x € E. Then D(A) consists
of functions f which fulfill

b f(I) = hmt—)O f(d)u(it?é.)) for x = (V7 C) € E'
» t— f(éu(t,C)) is absolutely continuous for x = (v,() € E,

> f(z) = [z f(y)Q(x,dy) forz €T,
» Bf e Li*(p),
and Af is

Af(z) = Xf(2) + \(@) / () — F(2)Q(a, dy).

E

(p(t, A) = 3232 Lm <y Lixp eay and p* () = 3272, Lir <y L ixq, _ery)
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Cost functions
Consider
» cemetery state E° # () (process absorbed)
» running reward/cost function ¢: E — R with ¢|ge =0

» terminal cost function ¥: £ — R with ¥|g\ ge =0

Corresponding cost functional:

o(z) = K, [ /0 "Xt + e~ T (X))

T =1inf{t > 0: X; € E°}

Goal: determine v(z) by means of integration instead of IDE
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lterated integrals

Exploit Markov property of {Xr1,} =

v(e) =E- (/T e 0(g(a, 1) dt + rr“Tlv<Xn>) Loz ony

+ (/ e U(p(x,t))dt + eV (g(a, T))) Lirery}

0

T
+ (/ 676%(‘75(%: t))dt + e o \I}(XTI)) n{TlT}:|
0
=H(z) + Gu(x)
H ... collects costs/rewards between jumps

G ... shifts problem forward by one jump (time)

In total we arrive at:

n

v(z) = GMo(x) + Z G "H(x)
—0 2i—1 dim integral
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Identify integrand (unfortunately complicated):

gi_l'H(IL'())Z

/fw(tl,mo) / /fw ta,x1)e” 2/ / fw (tim1, mi—2)e %ti-1

t1=0 x1EE to= T2 €EE tj—1=0
H(xi—1)Q((wi—2,ti—1),dxi_1)dt;_1 - Q(¢(x0,t1), dw1)dtr

zi_1€EE

ST (n)

t1=0z1€FE ti—1=0z;, 1€EFE
H(xi—1)Q(@(xi—2,ti—1),dxs_1)dt;—1 - - - Q(¢(z0,t1), dz1)dt1

but still it can be beneficial to exploit

v(x) ~ Z G H(z)

i=1

for some x - but certainly not too many
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QMC integration

Numerically evaluate
/ f(x)de for f:[0,1]° =R
[0,1]°

using point set {x1,...,xny} C [0,1]°, N € N

Quality of points measured by D3, (distance to uniformity):
Y Y Un

Dy = sup
Jclo,1]®

<Nz e —)\(J)'

...sup taken over axis-aligned boxes J with one vertex in O

Koksma-Hlawka inequality provides error bound:

<V(f)Dx

1 N
— n) — d
N S /[ @

(low discrepancy sequence achieve D3 < C(In N)*N 1)
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Comparison of point sets
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Figure: 1000 Sobol points Figure: 1000 U([0,1]?) points
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Complications

Form of error bound appealing:

» contribution of point set via D}

» contribution of integrand via its variation V(f)

Drawback: V(f) in Hardy-Krause sense is hard to deal with

... best case f :[0,1]° — R continuous derivatives up to order s, then

/[0,1]ul

olul
Iy

I (Xu, 1)‘ dX,,
0F#uC{1,...,s}

» difficult to estimate

» many integrands are known to have unbounded variation
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Modified approach
For f € C%(]0,1]*) one gets:
Vic(f) < sup f —inf f + S sup{|[ Hess(f.a)]| [« € [0,1]")

such that error bound is

L&
/[0’1]5 f(x)dx — N Z=Zlf(ml) <

( sup f(z) — inf f(z)+ *Sup{l\H%S(f,w)H lz € [0,1]° }>
x€[0,1]8 €[o,1]°

with isotropic discrepancy

Dy = sup
Jek

—ﬁ{n<N Ty, €J}—AJ ))

(notice Dy < Dy < (4sv/s + 1)(Dx)/?, concept due to Pausinger & Svane 2015)
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Observations

Message: integrand part of GH(x) should be C?

includes: first ¢ jump times and ¢ — 1 post-jump locations

= interplay between ODE sensitivities

0 82 0 0? 02

and probabilistic ingredients (A, Q)

We have 2 choices:

Let {X"},en be smooth-coefficient-approximating PDMPs

» Use weak convergence to show convergence of expected values

» Show directly lim,, ;o v"(z) — v(x)
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Theorem (Kritzer et al. 2019)

Let X be a Feller PDMP with local characteristics (¢, A\, Q) and let
X™, n €N, be Feller PDMPs with local characteristics (¢™, A\, Q™).
Further, let the following assumptions hold:

(i) g™ — g and \™ — X as n — oo, uniformly in x € E,

(i) forall f € C;°(E,R),
/ F@)Q"(dy, ) / F()Qdy, z)

lim sup
n—r oo z€E

=0,

(i) X2 % X, in E.

Then X" % X in D([0,00), E) and if £, U are bounded and continuous

E, (/O e Ot(XM)dt + e—éfW(Xf)> —E, (/OTe_‘StE(Xt)dt + e-‘”xp(XT))

as n — oQ.
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Current work and outlook

Use PDMP techniques to analyze risk models with stochastic intensities

Surplus process (X, A, ) = ((X¢, At, t))e>0 with generators:

8f(ac At) Of(x, \,t) n Of (z, A, t)

B ot
+>\/ Flx —u,\ t)dFy(u —|—p/ F@, A+ y, t)dFy (y)

AN f(z, M\ ) =c — 0\

—(A+p)f(@, A1)

Of(x, A t) of(z, A\ t)  Of(x,\t)
“or o T o

+ A flz —u, A+ y,t)dFy(u)dFy (y)
o Jo

A f(z N t) = +6(a—N)

— Az, A\ t)

(Shot-noise: Pojer & Th. 2022, Hawkes: Palmowski, Pojer & Th. 2022 working paper)

24 /27



Figure: Surplus with stochastic intensity

(Plot by Simon Pojer: Hawkes or Shot-Noise?)
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Under meaningful assumptions on parameters we can derive:

lim efy(x, \) = CA

T—00

Proofs use:

» exponential martingales and suitable change of measure
» recurrence of intensities to get rid of \;

» renewal theorem of Schmidli (1997) for the equation

Zw) = 2w+ | " Z(u— )1 plu, ) B(dy)

(results are surprising, since suitable renewal structure is not obvious)
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Thank you for your attention
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