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Signatures...why?

Because the (time extended) signature
of a continuous semimartingale uniquely
determines its path...

...and because every polynomial on
the signature has a linear representative.

— If S = F((Xt)tepo,m]) for some continuous map F, then
ST ~ L(XT)
for some linear map L, where X denotes the signature of t — (t, X;).

— Linear regressions, affine and polynomial technology, and other
useful machinery can be applied!



Signature: definition and properties



Examples of the signature X of X

Set X; = t. Then

Let X be a one dimensional continuous semimartingale with Xo = 0. Then

X2 x3 Xk
Xe = (1, X, & R 6,...,75,...).

|

Example

Consider X; = (t, X:), where X is a one dimensional continuous semimartingale
with Xo = 0. Then

2

Re= (1,6, Xe, o, [} sdXs, [if Xods, 50, £,



Signature of a d dimensional continuous semimartingale

The signature (X¢):cpo, 7] of a d-dimensional continuous semimartingale
(Xt)tcpo, ) is the process given by

X = ({ep, Xe), (€1, Xs), . .., (ed, X¢), (&1 ® €1, Xy), (&1 ® &2, X¢), .. .),

for (ep,X;) =1 and
t .
(eh ® - ®e,,Xe) = / (eqn @ ®ej,_,,Xs) 0 dX]",
0
where o denotes the Stratonivoch integral:

t t
/YtodZt:/ YedZ + 1[Y, Z]..
0 0 2

Notation: we write (e;, X7) for (e, ® -+ ® €;,, X71), where | = (i, ..., /).



Nice properties

e Linearity: for each /, J there is a linear combination of indices / LI J such
that
(e, Xe)(es, Xe) = (er W ey, Xe)
N———
linear combination of X;'s elements!

Every polynomial in the signature has a linear representation! Example:
(e, X% = (X)X 2 / XodXs + [X]e =2/ X, 0 dX, = 2(e1 ® e1, Xe).

e Uniqueness: the value of the signature of X; := (t, X¢) at time T uniquely
determines the trajectories of (X: — Xo):epo,77-
Welcome back Markovianity :).

e Universal approximation theorem: For K compact, f : K — R continuous,
and € > 0, there is a finite set Z and A\, € R such that

X)) = Alen Xn)Lgeck; <&
leT

almost surely.
Door open for linear approximations!
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The model



The model
Goal: provide a good model for a set of traded assets S = (S, ..., SD).
—good = universal, tractable, and easy to calibrate.

Main ingredient: the market’s primary (underlying) process X, 1= (t, X¢).

Requested properties:
o The realizations of X are available in form of time series data and/or the
law of X under the pricing measure is known.

e It is reasonable to assume that:
e X is d-dimensional continuous semimartingale.
o X encodes all the randomness of S in a good way, meaning that the paths
of S are continuous maps of the paths of X.

The model: S,(£): = (St(1)s, ..., SP(£P):), where
S =+ Y fle,Xe),

N N 0</]<n
e X is the signature of X,
e n € N is the degree of truncation,
° %,E’) € R are the deterministic coefficients to be found.

See also Perez Arribas, Salvi, Szpruch ('20).



In one sentence: the model

Si)e =6+ > (e, X

o<|I|<n

is a linear model whose parameters are ¢ and whose building blocks are

Y t th ty . .
<e,,xt>:/ / / 1dX! - dXir
0 0 0

for some continuous semimartingale X = (X% X',..., X9).



The model: S,(€)¢ := £y + EO<\I\§n£’<e’7§§f> (D=1)

Flexibility: From the UAT S can be approximated by S,(¢).

Universality: Any classical model driven by Brownian motions can be arbitrarily
well approximated. Extensions to Lévy driven models are possible (joint work
with F. Primavera).

Classical requirements: No arbitrage can easily be guaranteed.
Tractability: Time extended signature of S,(£) can be written as map of (£, X).

— Knowing EQ[Xt], computing an approximation of the price of
(path-dependent) options reduces to evaluating a polynomial. Mathematically:

Eo[F(($n(0)e)ecto,m)] ~ P(L, Eg[Ke)),
for some some P such that P(- ,IE@[FA&T]) is polynomial.

— Formulas for the computations of E@[Xt] are available if X is a sufficiently
regular Markov (or non Markov) diffusion.



Two short excursus



The model: S,(€)¢ := £y + EO<“‘§nﬁ,<e,,§§t> (D=1)

Flexibility: S can be approximated by S,(¢).

Universality: Any classical model driven by Brownian motions can be arbitrarily
well approximated. Extensions to Lévy driven models are possible (joint work
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(path-dependent) options reduces to evaluating a polynomial. Mathematically:

Eo[F((Sn(0)e)ecto,m)] ~ P(L, Eg[Ke)),
for some some P such that P(- ,E@[XT]) is polynomial.
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regular Markov (or non Markov) diffusion.



Expected signature: what about the good old polynomial processes?

In R?, if dX; = b(X;)dt + /a(X:)dW; for some good a and some linear b, then
E[X:] = exp(tG)Xo,
for some matrix G.
Fix dX; = b:dt + \/a;dW;. Then
iy 1 in—1in
d<61, Xt> = ((e,/,Xt>bt” + E(é‘[//7 Xt>3g )dt + O'tth.
If b} = (b, X,) and a7 = (a?),X,) then

. 1 o
d(e,,Xt> = <e,/ L b('") =+ 56‘,// LU a('"*l'"),Xt) dt + O'tth,

Linear map of X;!

for some o. Hence, under some technical conditions,
E[X:] = exp(tG)Xo,

for some (potentially infinite dimensional) matrix G.



The model: S,(€)¢ := £y + EO<\I\§n£’<e’7§§f> (D=1)
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The model S,(¢); == ¢y + ZO<|,|§n€/<e/,§§t>: what about Taylor?

Let X be a Brownian motion and S be a nice stochastic process driven by X.
Then there are ¢ such that

E[|S: — Sa(£)el] = o(t"?).

How? Observe that

t t
St = So+ / co(s) ds + / al(s) dXs
0 S~ 0 N~
=co(0)+[5 coo(r)dr+[g cro(r)dX; =c1(0)+ [y cor(r)dr+[g cr1(r)dX,

= So+ c(0)t + c1(0)X: + (linear combination of double integrals)

=51(€)¢ =o(t1/2)

for £y = So, o = co(0), and ¢1 = ¢1(0).

Moments, characteristic function, and every possible property of X and its
signature is very well understood.

One can study the asymptotic properties of S using the asymptotic properties
of X! (Joint ongoing work with F. Bandi and R. Reno)



~

The model S,(¢); == ¢y + ZO<|,|§n€/<e/,Xt>: what about Taylor?

Example: Edgeworth expansion for the normalized characteristic function
_ 2
E[exp (iust Cot)}e7
av't
=1+ - S0 Ve

C1 2u
1 cor |, Co\ 2 (Cu)2( 1, s 1 6)]
b R I (- — )|t
+2[ (clJrcl)uJr a 2" tu 4
lr/eaN\2/1 4 1 2) cur i 3}
+2[(c1) (3“ 2" a6t

+ o(t)

See for instance Todorov ('21) or Bandi, Rend (to appear).



Calibration to time-series data



Calibration to time-series data

Model: Sp41(€)e := Snta(€)o + Lo (80, Xe) + Xy, £1(81, Xe), for

t
(&, %) = / (e, Ry dX..
0

Scenario: The realizations of the market’s primary (underlying) process X are
available in form of time series data: Xi,,..., X, .

Procedure:
o Compute the paths of the signature X (e.g. using iisignature in python).

e Use the paths of X as linear regression basis to find ¢ matching the prices,
i.e. minimizing the expression:

N N 2
Z(Sn+1(£)t; Z (50+/@ &, Xy) + Z 25 el,Xt>—5t,-> .

i=1 i=1 o<|/|<n



Out of sample result for a Heston market model
e Consider a Heston model (d=2, D=1):
dS: = pSedt + S¢/VidBY
dVi = k(0 — Vi)dt + o/ VedWY,

e Goal: approximate S with S3(£*), using the estimated Q-Brownian motions as
primary underlying process (£* € R13).

e Test: Simulate a new trajectory of the Heston model, extract the corresponding
Q-Brownian motions, use them to compute the trajectory of S3(¢*), compare the
obtained process with S.

out of sample trajectories from the path calibration

—— SIg-SDE

Heston

o 01 0.2 0 v.a o

Figure: Out of sample performance over 0,5 years with o = 0.25.



Calibration to option prices



Calibration to option prices

Model: Sp1(€)e := Sni1(€)o + Lo (89, Ke) + Yoy, £1(81,Ke). (D=d =1)

Scenario: The following quantities are available:
e Prices of options on S.

e The law of the market’s primary (underlying) process X under the pricing
measure Q.

Cool idea: Since computing the approximated price of an (even path
dependent) option with the proposed model reduces to evaluating a
polynomial, calibration on (even path dependent) option prices could be done
in a simple and efficient way.

— ...cool but dangerous! The given approximation has to be good enough in
each optimization's step!

Alternative idea: Use Monte Carlo pricing (with variance reduction). Note that
there is no need of new simulations in the optimization procedure.



Calibration to option prices: procedure

Scenario: The following quantities are available:

e Prices 71,...,mn of N options with payoffs

F1((St)ecio,m1)s - - - » Fn((St)eeqo, )

Procedure:

e Look for £ matching the corresponding option prices, i.e. minimizing the

expression
N
N2
MC
Z (P 77') ,

for some weights w', where PV (£) denotes the empirical mean of

Fi((S(O))eetn. ).

Important observation: the linearity of the model makes this procedure very
quick. Trajectories of X could be simulated just once in advance and stored. A
coefficients update reduces to a scalar product.



Calibration to option prices: the Heston model
e Consider a Heston model (d=2, D=1):
dS: = puSidt + S/ VidBY
dVi = k(0 — Vi) dt + o/ VedW,
e Goal: approximate S with S3(¢*), using two Q-Brownian motions as

primary underlying process (£* € R*3).
e Test: Compute the implied volatility surface (using Monte Carlo) under

S3(£%) (red) and compare it with the Heston’s one (blue).
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Figure: IVSs and corresponding absolute error (7 maturities from 30 days to 2 years)



Calibration to option prices: S&P 500 17.03.2021
e Let S be the stochastic process describing the price of S&P 500 starting

at day 17.03.2021.
e Goal: approximate S with S;(¢*), using two Q-Brownian motions as

primary underlying process (¢* € R'?).
e Test: Compute the implied volatility surface (using Monte Carlo) under

S4(£*) and compare it with the market's one.

09,95 Loo
~ 7105
Strikeg 110

Figure: IVSs and corresponding absolute error (6 maturities within 60 days and 2

years).



Remarks on the previous example
e The result is obtained using a closer-to-sup-norm loss function:

N
; A P
Z ag' (P,-MC(Z) — Tr') ,
i=1
where ¢; is the absolute error for the i-th price in a previous calibration

and « and p are big.
e The calibrated model produces a reasonable implied volatility surface also

for out of sample strikes and maturities.
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Figure: IVS of the calibrated model (6 maturities within 60 days and 2 years). Out of

sample represented as red dots.



Conclusions



Conclusions

e \We saw that from a mathematical point of view signatures have some extremely
interesting properties and deserve to be used in a modeling context.

= F((Xt)tep,m) = L(FA{T) for some linear map L.
e We introduced a linear model based on the signature of an underlying process.
= Flexible: classical models can be approximated arbitrarily well.

= Tractable: since as soon as ]E@[FAQ] is known, estimators for different quantities are
available in closed form.

e We illustrated two calibration methods showing the corresponding performances
on simulated and real data.



Thank you for your attention!



