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Signatures...why?

Because the (time extended) signature
of a continuous semimartingale uniquely
determines its path...

...and because every polynomial on
the signature has a linear representative.

−→ If ST = F ((Xt)t∈[0,T ]) for some continuous map F , then

ST ≈ L(X̂T )

for some linear map L, where X̂ denotes the signature of t 7→ (t,Xt).

−→ Linear regressions, affine and polynomial technology, and other
useful machinery can be applied!



Signature: definition and properties



Examples of the signature X of X

Example

Set Xt = t. Then
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Let X be a one dimensional continuous semimartingale with X0 = 0. Then

Xt = (1,Xt ,
X 2
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Example

Consider X̂t = (t,Xt), where X is a one dimensional continuous semimartingale
with X0 = 0. Then

X̂t = (1, t,Xt ,
t2

2
,
∫ t

0
sdXs ,

∫ t

0
Xsds,
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Signature of a d dimensional continuous semimartingale

The signature (Xt)t∈[0,T ] of a d-dimensional continuous semimartingale
(Xt)t∈[0,T ] is the process given by

Xt = (〈e∅,Xt〉, 〈e1,Xt〉, . . . , 〈ed ,Xt〉, 〈e1 ⊗ e1,Xt〉, 〈e1 ⊗ e2,Xt〉, . . .),

for 〈e∅,Xt〉 = 1 and

〈ei1 ⊗ · · · ⊗ ein ,Xt〉 =

∫ t

0

〈ei1 ⊗ · · · ⊗ ein−1 ,Xs〉 ◦ dX in
s ,

where ◦ denotes the Stratonivoch integral:∫ t

0

Yt ◦ dZt =

∫ t

0

YtdZt +
1

2
[Y ,Z ]t .

Notation: we write 〈eI ,XT 〉 for 〈ei1 ⊗ · · · ⊗ ein ,XT 〉, where I = (i1, . . . , in).



Nice properties

• Linearity: for each I , J there is a linear combination of indices I � J such
that

〈eI ,Xt〉〈eJ ,Xt〉 = 〈eI � eJ ,Xt〉︸ ︷︷ ︸
linear combination of Xt ’s elements!

.

Every polynomial in the signature has a linear representation! Example:

〈e1,Xt〉2 = (Xt)
2 Itô

= 2

∫ t

0

XsdXs + [X ]t = 2

∫ t

0

Xs ◦ dXs = 2〈e1 ⊗ e1,Xt〉.

• Uniqueness: the value of the signature of X̂t := (t,Xt) at time T uniquely
determines the trajectories of (Xt − X0)t∈[0,T ].
Welcome back Markovianity :).

• Universal approximation theorem: For K compact, f : K → R continuous,
and ε > 0, there is a finite set I and λI ∈ R such that

|f (X̂2)−
∑
I∈I

λI 〈eI , X̂T 〉|1{X̂2∈K} < ε,

almost surely.
Door open for linear approximations!
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The model



The model
Goal: provide a good model for a set of traded assets S = (S1, . . . , SD).
→good = universal, tractable, and easy to calibrate.

Main ingredient: the market’s primary (underlying) process X̂t := (t,Xt).

Requested properties:

• The realizations of X̂ are available in form of time series data and/or the

law of X̂ under the pricing measure is known.
• It is reasonable to assume that:

• X is d-dimensional continuous semimartingale.

• X̂ encodes all the randomness of S in a good way, meaning that the paths

of S are continuous maps of the paths of X̂ .

The model: Sn(`)t = (S1
n (`1)t , . . . , S

D
n (`D)t), where

S j
n(`j)t := `j∅ +

∑
0<|I |≤n

`jI 〈eI , X̂t〉,

• X̂ is the signature of X̂ ,

• n ∈ N is the degree of truncation,

• `j∅, `
j
I ∈ R are the deterministic coefficients to be found.

See also Perez Arribas, Salvi, Szpruch (’20).



In one sentence: the model

S j
n(`j)t := `j∅ +

∑
0<|I |≤n

`jI 〈eI , X̂t〉,

is a linear model whose parameters are `jI and whose building blocks are

〈eI , X̂t〉 =

∫ t

0

∫ tn

0

· · ·
∫ t2

0

1 dX̂ i1
t1
· · · dX̂ in

tn

for some continuous semimartingale X̂ = (X̂ 0, X̂ 1, . . . , X̂ d).



The model: Sn(`)t := `∅ +
∑

0<|I |≤n `I 〈eI , X̂t〉 (D = 1)

Flexibility: From the UAT S can be approximated by Sn(`).

Universality: Any classical model driven by Brownian motions can be arbitrarily
well approximated. Extensions to Lévy driven models are possible (joint work
with F. Primavera).

Classical requirements: No arbitrage can easily be guaranteed.

Tractability: Time extended signature of Sn(`) can be written as map of (`, X̂).

−→ Knowing EQ[X̂t ], computing an approximation of the price of
(path-dependent) options reduces to evaluating a polynomial. Mathematically:

EQ[F ((Sn(`)t)t∈[0,T ])] ≈ P(`,EQ[X̂t ]),

for some some P such that P( · ,EQ[X̂T ]) is polynomial.

−→ Formulas for the computations of EQ[X̂t ] are available if X is a sufficiently
regular Markov (or non Markov) diffusion.



Two short excursus
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Expected signature: what about the good old polynomial processes?

In Rd , if dXt = b(Xt)dt +
√

a(Xt)dWt for some good a and some linear b, then

E[Xt ] = exp(tG)X0,

for some matrix G .

Fix dXt = btdt +
√
atdWt . Then

d〈eI ,Xt〉 =
(
〈eI ′ ,Xt〉bin

t +
1

2
〈eI ′′ ,Xt〉a

in−1 in
t

)
dt + σtdWt .

If bi
t = 〈b(i),Xt〉 and aijt = 〈a(ij),Xt〉 then

d〈eI ,Xt〉 = 〈eI ′ � b(in) +
1

2
eI ′′ � a(in−1 in),Xt〉︸ ︷︷ ︸

Linear map of Xt !

dt + σtdWt ,

for some σ. Hence, under some technical conditions,

E[Xt ] = exp(tG)X0,

for some (potentially infinite dimensional) matrix G .



The model: Sn(`)t := `∅ +
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(path-dependent) options reduces to evaluating a polynomial. Mathematically:

EQ[F ((Sn(`)t)t∈[0,T ])] ≈ P(`,EQ[X̂t ]),

for some some P such that P( · ,EQ[X̂T ]) is polynomial.
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The model Sn(`)t := `∅ +
∑

0<|I |≤n `I 〈eI , X̂t〉: what about Taylor?

Let X be a Brownian motion and S be a nice stochastic process driven by X .

Then there are ` such that

E[|St − Sn(`)t |] = o(tn/2).

How? Observe that

St = S0 +

∫ t

0

c0(s)︸ ︷︷ ︸
=c0(0)+

∫ s
0 c00(r)dr+

∫ s
0 c10(r)dXr

ds +

∫ t

0

c1(s)︸ ︷︷ ︸
=c1(0)+

∫ s
0 c01(r)dr+

∫ s
0 c11(r)dXr

dXs

= S0 + c0(0)t + c1(0)Xt︸ ︷︷ ︸
=S1(`)t

+ (linear combination of double integrals)︸ ︷︷ ︸
=o(t1/2)

for `∅ = S0, `0 = c0(0), and `1 = c1(0).

Moments, characteristic function, and every possible property of X and its
signature is very well understood.

One can study the asymptotic properties of S using the asymptotic properties
of X̂! (Joint ongoing work with F. Bandi and R. Renò)



The model Sn(`)t := `∅ +
∑

0<|I |≤n `I 〈eI , X̂t〉: what about Taylor?

Example: Edgeworth expansion for the normalized characteristic function

E
[

exp
(
iu
St − c0t

c1

√
t

)]
e

u2

2

= 1 +
[
− c11

c1

i

2
u3
]√

t

+
1

2

[
−
(c01

c1
+

c10

c1

)
u2 +

(c11

c1

)2(
− 1

2
u2 + u4 − 1

4
u6
)]

t

+
1

2

[(c21

c1

)2(1

3
u4 − 1

2
u2
)
− c111

c1

i

6
u3
]
t

+ o(t)

See for instance Todorov (’21) or Bandi, Renò (to appear).



Calibration to time-series data



Calibration to time-series data

Model: Sn+1(`)t := Sn+1(`)0 + `∅〈ẽ∅, X̂t〉+
∑

0<|I |≤n `I 〈ẽI , X̂t〉, for

〈ẽI , X̂t〉 =

∫ t

0

〈eI , X̂s〉dXs .

Scenario: The realizations of the market’s primary (underlying) process X̂ are

available in form of time series data: X̂t1 , . . . , X̂tN .

Procedure:

• Compute the paths of the signature X̂ (e.g. using iisignature in python).

• Use the paths of X̂ as linear regression basis to find ` matching the prices,
i.e. minimizing the expression:

N∑
i=1

(Sn+1(`)ti − Sti )
2 =

N∑
i=1

(
S0 + `∅〈ẽ∅, X̂ti 〉+

∑
0<|I |<n

`I 〈ẽI , X̂ti 〉 − Sti

)2

.



Out of sample result for a Heston market model
• Consider a Heston model (d=2, D=1):

dSt = µStdt + St
√

VtdB
P
t

dVt = κ(θ − Vt)dt + σ
√

VtdW
P
t ,

• Goal: approximate S with S3(`∗), using the estimated Q-Brownian motions as
primary underlying process (`∗ ∈ R13).

• Test: Simulate a new trajectory of the Heston model, extract the corresponding
Q-Brownian motions, use them to compute the trajectory of S3(`∗), compare the
obtained process with S.

Figure: Out of sample performance over 0,5 years with σ = 0.25.



Calibration to option prices



Calibration to option prices

Model: Sn+1(`)t := Sn+1(`)0 + `∅〈ẽ∅, X̂t〉+
∑

0<|I |≤n `I 〈ẽI , X̂t〉. (D = d = 1)

Scenario: The following quantities are available:

• Prices of options on S .

• The law of the market’s primary (underlying) process X̂ under the pricing
measure Q.

Cool idea: Since computing the approximated price of an (even path
dependent) option with the proposed model reduces to evaluating a
polynomial, calibration on (even path dependent) option prices could be done
in a simple and efficient way.

−→ ...cool but dangerous! The given approximation has to be good enough in
each optimization’s step!

Alternative idea: Use Monte Carlo pricing (with variance reduction). Note that
there is no need of new simulations in the optimization procedure.



Calibration to option prices: procedure

Scenario: The following quantities are available:

• Prices π1, . . . , πN of N options with payoffs

F1((St)t∈[0,T1]), . . . ,FN((St)t∈[0,TN ]).

Procedure:

• Look for ` matching the corresponding option prices, i.e. minimizing the
expression

N∑
i=1

w i
(
PMC
i (`)− πi

)2

,

for some weights w i , where PMC (`) denotes the empirical mean of

Fi

(
(Sn(`)t)t∈[0,Ti ])

)
.

Important observation: the linearity of the model makes this procedure very
quick. Trajectories of X̂ could be simulated just once in advance and stored. A
coefficients update reduces to a scalar product.



Calibration to option prices: the Heston model
• Consider a Heston model (d=2, D=1):

dSt = µStdt + St

√
VtdB

P
t

dVt = κ(θ − Vt)dt + σ
√
VtdW

P
t ,

• Goal: approximate S with S3(`∗), using two Q-Brownian motions as
primary underlying process (`∗ ∈ R13).
• Test: Compute the implied volatility surface (using Monte Carlo) under

S3(`∗) (red) and compare it with the Heston’s one (blue).

Figure: IVSs and corresponding absolute error (7 maturities from 30 days to 2 years).



Calibration to option prices: S&P 500 17.03.2021
• Let S be the stochastic process describing the price of S&P 500 starting

at day 17.03.2021.
• Goal: approximate S with S4(`∗), using two Q-Brownian motions as

primary underlying process (`∗ ∈ R121).
• Test: Compute the implied volatility surface (using Monte Carlo) under

S4(`∗) and compare it with the market’s one.

Figure: IVSs and corresponding absolute error (6 maturities within 60 days and 2
years).



Remarks on the previous example
• The result is obtained using a closer-to-sup-norm loss function:

N∑
i=1

αεi
(
PMC
i (`)− πi

)p
,

where εi is the absolute error for the i-th price in a previous calibration
and α and p are big.
• The calibrated model produces a reasonable implied volatility surface also

for out of sample strikes and maturities.

Strikes
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0.9
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1.3
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1.00
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2.00

IV

0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325

Figure: IVS of the calibrated model (6 maturities within 60 days and 2 years). Out of
sample represented as red dots.



Conclusions



Conclusions

• We saw that from a mathematical point of view signatures have some extremely
interesting properties and deserve to be used in a modeling context.

⇒ F ((Xt)t∈[0,T ]) ≈ L(X̂T ) for some linear map L.

• We introduced a linear model based on the signature of an underlying process.

⇒ Flexible: classical models can be approximated arbitrarily well.

⇒ Tractable: since as soon as EQ[X̂] is known, estimators for different quantities are
available in closed form.

• We illustrated two calibration methods showing the corresponding performances
on simulated and real data.



Thank you for your attention!


