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We investigate generically applicable and intuitively appealing
prediction intervals based on leave-one-out residuals. The conditional
coverage probability of the proposed intervals, given the observa-
tions in the training sample, is close to the nominal level, provided
that the underlying algorithm used for computing point predictions
is sufficiently stable under the omission of single feature/response
pairs. Our results are based on a finite sample analysis of the em-
pirical distribution function of the leave-one-out residuals and hold
in non-parametric settings with only minimal assumptions on the
error distribution. To illustrate our results, we also apply them to
high-dimensional linear predictors, where we obtain uniform asymp-
totic conditional validity as both sample size and dimension tend to
infinity at the same rate. These results show that despite the seri-
ous problems of resampling procedures for inference on the unknown
parameters (cf. Bickel and Freedman, 1983; El Karoui and Purdom,
2015; Mammen, 1996), leave-one-out methods can be successfully ap-
plied to obtain reliable predictive inference even in high dimensions.

1. Introduction. It is a fundamental task of statistical learning, when
given an i.i.d. training sample of feature/response pairs (xi, yi) and an addi-
tional feature vector x0, to provide a point prediction for the corresponding
unobserved response variable y0. In such a situation, a prediction interval
that contains the unobserved response variable with a prescribed probabil-
ity provides valuable additional information to the practitioner. In many
applications, when measurements are costly, a training sample is obtained
only once and is subsequently used to repeatedly construct point and inter-
val predictions as new measurements of feature vectors become available. In
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2 Steinberger, Leeb / Conditional predictive inference for stable algorithms

such a situation, it is desirable to control the conditional coverage probabil-
ity of the prediction interval given the observations in the training sample,
rather than the unconditional probability.

We study a very simple method based on leave-one-out residuals which is
generic in the sense that it applies to a large class of possible point predic-
tors, while providing asymptotically valid prediction intervals. For an i.i.d.
training sample Tn = (xi, yi)

n
i=1 of size n, consisting of Rp × R-valued fea-

ture/response pairs, and an additional feature vector x0 in Rp, suppose that
we have decided to use a prediction algorithm Mn,p : (Rp×R)n×Rp → R to
produce a point prediction ŷ0 = Mn(Tn, x0) for the real unobserved response

y0. If T
[i]
n = (xj , yj)j 6=i is the sample without the i-th observation pair, com-

pute leave-one-out residuals ûi = yi −Mn−1(T
[i]
n , xi), 1 ≤ i ≤ n. Finally,

to obtain a prediction interval for y0, compute appropriate empirical quan-
tiles q̂α1 and q̂α2 from the collection û1, . . . , ûn and report the leave-one-out
prediction interval

PI(L1O)
α1,α2

(Tn, x0) = (ŷ0 + q̂α1 , ŷ0 + q̂α2 ].

The use of the half open interval is due to technical convenience and is incon-
sequential for practical purposes. In this paper we investigate the conditional
coverage probability

Pn+1(y0 ∈ PI(L1O)
α1,α2

(Tn, x0)‖Tn),

first in finite samples, and then in more specific asymptotic settings where
the dimension p of the feature vectors xi increases at the same rate as sample
size n. We find that even in these challenging scenarios where both n and p

are large, the conditional coverage of PI
(L1O)
α1,α2 (Tn, x0) is close to the nominal

level α2−α1. Note that the analogous procedure based on ordinary residuals
yi −Mn(Tn, xi) instead of leave-one-out residuals would, in general, not be
valid in such a large-p scenario (cf. Bickel and Freedman, 1983).

Despite the remarkable simplicity of this method, and its apparent sim-
ilarity to the jackknife, we are not aware of any rigorous analysis of its
statistical properties. Our approach is very similar, in spirit, to the methods
proposed in Butler and Rothman (1980), Stine (1985), Schmoyer (1992),
Olive (2007) and Politis (2013), in the sense that it relies on resampling and
leave-one-out ideas for predictive inference. But the methods from these ref-
erences, like most resampling procedures in the literature, are investigated
only in the classical large sample asymptotic regime where the number of
available explanatory variables is fixed. Notable exceptions are Bickel and
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Freedman (1983), Mammen (1996) and, recently, El Karoui and Purdom
(2015). However, the latter articles draw mainly negative conclusions about
resampling methods in high dimensions, arguing, for instance, that the fa-
mous residual bootstrap in linear regression, which relies on the consistent
estimation of the true unknown error distribution, is unreliable when the
number of variables in the model is not small compared to sample size. In

contrast, we show that the leave-one-out prediction interval PI
(L1O)
α1,α2 does

not suffer from these problems because it relies on estimation of the condi-
tional distribution of the prediction error Pn+1(y0− ŷ0 ≤ t‖Tn) instead of an
estimator for the unconditional distribution of the error term y0−E[y0‖x0].
That the use of leave-one-out residuals leads to more reliable methods in
high dimensions was also observed by El Karoui and Purdom (2015).

Our contribution is threefold. First, we show that the leave-one-out predic-
tion interval is approximately conditionally valid given the training sample
Tn, in the sense that

Pn+1
(
y0 ∈ PI(L1O)

α1,α2
(Tn, x0)

∥∥∥Tn) ≈ α2 − α1.

The error term of the above approximation can be controlled in finite sam-
ples and asymptotically, provided that the employed prediction algorithm
Mn is sufficiently stable under the omission of single feature/response pairs
and that it has a bounded (in probability) estimation error as an estima-
tor for the true unknown regression function. It is of paramount importance,
however, to point out that we do not need to assume consistent estimation of
the regression function and our leading examples are such that consistency
fails.

Second, we show that the required stability and approximation properties
are satisfied in many cases, including many linear predictors in high dimen-
sional regression problems and even if the true model is not exactly linear.
In particular, the proposed method is always valid if the employed predictor
is consistent for the unknown regression function (or for an appropriate sur-
rogate target), and is therefore applicable to complex data structures and
methods such as non-parametric regression or LASSO prediction.

Third, we discuss issues of interval length and find that in typical situa-
tions predictors with smaller mean squared prediction error lead to shorter
prediction intervals. For ordinary least squares prediction, we also investi-
gate the impact of the dimensionality of the regression problem on the in-
terval length and discuss the relationship between the leave-one-out method
and an obvious sample splitting technique. All our results hold uniformly
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over large classes of data generating processes and under weak assumptions
on the unknown error distribution (e.g., the errors may be heavy tailed and
non-symmetric, and the standardized design vectors Cov[xi]

−1/2xi may have
dependent components and a non-spherical distribution).

Our work is greatly inspired by El Karoui et al. (2013) and Bean et al.
(2013) (see also El Karoui, 2013, 2018), who investigate efficiency of general
M -estimators in linear regression when the number of regressors p is of the
same order of magnitude as sample size n. In particular, the M -estimators
studied in these references provide one leading example of a class of linear
predictors for which our construction of prediction intervals leads to condi-
tionally valid predictive inference even in high dimensions.

The remainder of the paper is organized as follows. In the following Sub-
section 1.1 we give a brief overview of alternative methods from the large
body of literature on predictive inference in regression. Subsection 1.2 in-
troduces the notation that is used throughout the paper. Sections 2 and 3
proceed along a general-to-specific scheme. We begin, in Subsection 2.1, by
introducing the general leave-one-out method and the notion of conditional
validity and we take a first step towards proving that the latter property is
satisfied. In Subsection 2.2, we draw the connection between conditional va-
lidity and algorithmic stability and present our main results which provide
generic sufficient conditions for conditional validity. In Section 3 we then
show that these conditions can be verified in challenging statistical scenar-
ios where regression function estimation and the bootstrap usually fail to
be consistent. In particular, we consider linear predictors based on regular-
ized M -estimators and based on James-Stein-type estimators in a situation
where the number of regressors p is not small relative to sample size n. We
also take a closer look at the ordinary least squares estimator, because its
simplicity allows for a rigorous discussion of the resulting interval length.
In Section 4, we then also discuss the important case where the employed
predictor is consistent (possibly for some pseudo target rather than the true
regression function) and we provide examples on non-parametric regression
and high-dimensional LASSO. The case of consistency is an important test
case for our method. Finally, in Section 5, we provide some further discus-
sions and sketch possible extensions of our results. Most of the proofs are
deferred to the supplementary material.

1.1. Related work. In a fully parametric setting, predictive inference is
essentially a special case of parametric inference (see, e.g., Cox and Hinkley,
1974, Section 7.5). Constructing valid prediction sets becomes much more



Steinberger, Leeb / Conditional predictive inference for stable algorithms 5

challenging, however, if one is interested in a non-parametric setting. By
non-parametric, we do not only mean that the regression function can not
be indexed by a finite dimensional Euclidean space, but also that the random
fluctuations yi − E[yi‖xi] about the conditional mean function can not be
described by a parametric family of distributions.

1.1.1. Tolerance regions. A rather well researched and classical topic
in the statistics literature is the construction of so called tolerance re-
gions or tolerance limits, which are closely related to prediction regions.
A tolerance region is a set valued estimate TRα(Tn) ⊆ Rm based on
i.i.d. m-variate data z1, . . . , zn, Tn = (z1, . . . , zn), such that the proba-
bility of covering an independent copy z0 is close to a prescribed confi-
dence level. More precisely, a (1 − α, ρ) tolerance region TR is such that
Pn(Pn+1(z0 ∈ TR‖Tn) ≥ 1−α) = ρ, and TR is called a (1−α)-expectation
tolerance region, if EPn [Pn+1(z0 ∈ TR‖Tn)] = Pn+1(z0 ∈ TR) = 1 − α (cf.
Krishnamoorthy and Mathew, 2009). The study of non-parametric tolerance
regions goes back at least to Wilks (1941, 1942), Wald (1943) and Tukey
(1947) (see Krishnamoorthy and Mathew, 2009, for an overview and further
references) and is traditionally based on the theory of order statistics of
i.i.d. data. These researchers already obtained multivariate distribution-free
methods, that is, tolerance regions that achieve a certain type of validity
in finite samples without imposing parametric assumptions. The connection
to prediction regions is apparent: If zi = (xi, yi), then a tolerance region
TRα(Tn) for z0 = (x0, y0) can be immediately used to obtain a prediction re-
gion for y0 by setting PRα(Tn, x0) = {y : (x0, y) ∈ TRα(Tn)}. However, this
is arguably not the most economical way of constructing a prediction region.
In fact, the construction of a multivariate and possibly high-dimensional tol-
erance region appears to be a more ambitious goal than the construction of
a prediction region for a univariate response variable. In particular, since
estimation of the full density of z0 – which could be used to compute an
optimal highest density region – is usually not feasible if the dimension m
is non-negligible compared to sample size n, one has to specify a shape for
the tolerance region TRα and it is not obvious which shapes are preferable
in a non-parametric setting. For example, Bucchianico et al. (2001) provide
results for smallest possible hyperrectangles and ellipsoids, but obtain only
the classical large sample asymptotic results with fixed dimension. Chatter-
jee and Patra (1980) estimate the density non-parametrically, which fails
in high dimensions. Li and Liu (2008) use a notion of data depth to avoid
the specification of the shape, but the fully data driven method, again, is
only shown to be valid asymptotically, with the dimension fixed. Finally, nu-
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merically computing the x0-cut of TRα to obtain PRα is computationally
demanding and the result is sensitive to the shape of TRα.

1.1.2. Conformal prediction. A strand of literature which has emerged
from the early ideas of non-parametric tolerance regions, but which is more
prominent within the machine learning community than the statistics com-
munity, is called conformal prediction (Vovk et al., 1999, 2005, 2009). Con-
formal prediction is a very flexible general framework for construction of
prediction regions that can be used in conjunction with any learning al-
gorithm. The general idea is to construct a pivotal p-value π(y?) to test
H? : y0 = y? based on the sample Tn and x0, for each possible value
y? of y0, and to invert the test to obtain a prediction region for y0, i.e.,
PRα = {y : π(y) ≥ α}. The method was primarily designed for an on-line
learning setup (cf. Vovk et al., 2009), but has recently been popularized in
the statistics community by Lei et al. (2017, 2013) and Lei and Wasser-
man (2014), who study it as a batch method. Aside from their flexibil-
ity, conformal prediction methods have the advantage that they are valid
in finite samples, in the sense that the unconditional coverage probability
Pn+1(y0 ∈ PRα) is no less than the nominal level 1 − α, provided only
that the feature/response pairs (x0, y0), (x1, y1), . . . , (xn, yn) are exchange-
able. On the other hand, their practical implementation is not so straight
forward, because, for the test inversion, the p-value π has to be evaluated
on a grid of possible y values, which is especially tricky if the conformal
prediction region is not an interval (see Chen et al. (2017) and Lei (2017)
for further discussion of these issues). Moreover, it is not clear if the classical
conformal methods can also provide a form of conditional validity. In Vovk
(2012), a version of conformal prediction was presented that achieves also
a certain type of (approximate) conditional validity. However, the method
relies on a sample splitting idea, which usually makes the prediction region
unnecessarily wide (see Sections 3.4 and 5.2 for further discussion of sample
splitting techniques). A different version of conditional validity (conditioning
on x0), is discussed in Barber et al. (2019a) (see also Remark 5.3 below).

1.1.3. The jackknife+. Barber et al. (2019b) recently proposed a mod-
ification of the leave-one-out method considered here. For the modified
method, which they call jackknife+, they derived a finite-sample lower bound
for the unconditional coverage probability, under the assumption that the
feature/response pairs are exchangeable and without requiring that the pre-
diction algorithm is stable. For a jackknife+ interval with nominal coverage
probability 1 − α, the lower bound is 1 − 2α; if the prediction algorithm is
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stable (under omission of a single feature/response pair), the lower bound
moves closer towards 1 − α (provided that the interval is slightly modified
further). In simulations and data-examples, Barber et al. (2019b) found that
the jackknife+ performs essentially like the jackknife, i.e., like the method
considered in this paper, unless the prediction algorithm is highly unstable;
in the unstable case, jackknife+ outperforms jackknife. The use of an unsta-
ble prediction method is, of course, debatable, at least if the user is aware
of the instability. The conditional performance of the jackknife+ interval,
i.e., its coverage probability conditional on the training data, is yet to be
analyzed.

1.2. Preliminaries and notation. For p ∈ N, let Y ⊆ R and X ⊆ Rp be
Borel measurable sets and let Z = X × Y. Moreover, let P be some class
of Borel probability measures on Z and, for n ∈ N, n ≥ 2, let Pn denote
the n-fold product measure of P ∈ P. For P ∈ P, we write z0 = (x0, y0)
for a random vector distributed according to P and we write Tn = (zi)

n
i=1,

zi = (xi, yi), for a training sample, where z0, z1, . . . , zn are independent and
identically distributed according to P . This means that (Tn, z0) is distributed
as Pn+1. By mP (x) := EP [y0‖x0 = x], mP : X → R, we denote (a version
of) the true unknown regression function, if it exists. We sometimes express
the training data Tn as (X,Y ), where X = [x1, . . . , xn]′ is of dimension
n × p and Y = (y1, . . . , yn)′ is a random n-vector. Moreover, X ′ denotes
the transpose of X, and we write (X ′X)† for the Moore-Penrose inverse
of X ′X. Similarly, we write X[i] = [x1, . . . , xi−1, xi+1, . . . , xn]′ and Y[i] =
(y1, . . . , yi−1, yi+1, . . . , yn)′.

Next, we formally define the notion of a (learning) algorithm and that

of a predictor (or estimator) m̂n and its leave-one-out equivalent m̂
[i]
n . Con-

sider a measurable function Mn,p : Zn × X → R. Mn,p is also called a
learning algorithm. For each vector x ∈ X , we set m̂n(x) = Mn,p(Tn, x) and

m̂
[i]
n (x) = Mn−1,p(T

[i]
n , x), where T

[i]
n = (zj)j 6=i, i = 1, . . . , n, denotes the re-

duced training sample where the observation zi = (xi, yi) has been deleted.
Thus whenever we are talking about a predictor, we implicitly talk about
the pair of functions (Mn,p,Mn−1,p). A predictor m̂n is called symmetric if
for every choice of z1, . . . , zn ∈ Z, every x ∈ X and every permutation π of
n elements, Mn,p((zi)

n
i=1, x) = Mn,p((zπ(i))

n
i=1, x), and if the same holds true

for Mn−1,p. Since the training data Tn = (z1, . . . , zn) are assumed to be i.i.d.,
it is natural to consider symmetric predictors. Also note that, although com-
putationally demanding, in principle any predictor m̂n can be symmetrized
by averaging over all possible permutations of the training data.
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If A(t) ∈ B(Z), t ∈ Zn, is a collection of Borel subsets of Z, then we define
the conditional probability of A(Tn) given the training sample Tn = t by
Pn+1(z0 ∈ A(Tn)‖Tn = t) := P (A(t)). For example, if PI(t, x) is an interval
depending on t ∈ Zn and x ∈ X , then Pn+1(y0 ∈ PI(Tn, x0)‖Tn = t) :=
P ({(x, y) ∈ Z : y ∈ PI(t, x)}), assuming measureability. If f : D → R is a
real function on some domain D, then ‖f‖∞ = sups∈D |f(s)|. For a, b ∈ R,
we also write a ∨ b = max(a, b), a ∧ b = min(a, b) and a+ = a ∨ 0, and let

dδe denote the smallest integer no less than δ ∈ R. We write U
L
= V , if the

random quantities U and V are equal in distribution and the underlying
probability space is clear from the context. By a slight abuse of notation,

we also write U
L
= L0 if the random variable U is distributed according to

the probability law L0 and, again, the underlying probability space is clear
from the context.

For our asymptotic statements, we will also need the following conven-
tions. Let (pn)n∈N be a sequence of positive integers. If, for each n ∈ N,
Pn is a collection of probability distributions on Zn ⊆ Rpn+1 and φn :
Znn × Pn → R is a function such that for every P ∈ Pn, t 7→ φn(t, P ) is
measurable, then we say that φn is Pn-uniformly bounded in probability
if lim supn→∞ supP∈Pn P

n(|φn(Tn, P )| > M) → 0, as M → ∞, and write
φn = OPn(1). If supP∈Pn P

n(|φn(Tn, P )| > ε) → 0, as n → ∞, for every
ε > 0, then we say that φn converges Pn-uniformly in probability to zero
and write φn = oPn(1). Similarly, we say that φn converges Pn-uniformly in
probability to ψn : Znn × Pn → R, which is also assumed to be measurable
in its first argument, if |φn − ψn| = oPn(1).

2. Main results.

2.1. Leave-one-out prediction intervals and conditional validity. For α ∈
(0, 1), we want to construct a prediction interval PIα(Tn, x0) = (m̂n(x0) +
Lα(Tn), m̂n(x0)+Uα(Tn)] for y0, where Lα and Uα are measurable functions
on Zn, such that

sup
P∈P

EPn
[∣∣∣Pn+1

(
y0 ∈ PIα(Tn, x0)

∥∥∥Tn)− (1− α)
∣∣∣](2.1)

is small. We can not expect the expression in (2.1) to be equal to zero
for some fixed n and a reasonably large class P (see Remark 5.1 below).
Therefore, we are content with (2.1) being close to zero as n, and possi-
bly also p, is large. This notion of conditional validity is related to what
Vovk (2013) calls training conditional validity, and which is itself closely
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related to the conventional notion of a (1 − α, ρ) tolerance region for ρ
close to 1 (cf. Krishnamoorthy and Mathew, 2009). However, these con-
ventional definitions require only that the conditional coverage probability
Pn+1(y0 ∈ PIα(Tn, x0)‖Tn) is no less than the prescribed confidence level
1−α, with high probability, whereas the requirement that (2.1) is small also
excludes overly conservative procedures. Note that if (2.1) is small, then also∣∣Pn+1 (y0 ∈ PIα(Tn, x0))− (1− α)

∣∣
=
∣∣∣EPn [Pn+1

(
y0 ∈ PIα(Tn, x0)

∥∥∥Tn)− (1− α)
]∣∣∣

≤ EPn
[∣∣∣Pn+1

(
y0 ∈ PIα(Tn, x0)

∥∥∥Tn)− (1− α)
∣∣∣]

will be small. Hence, the prediction interval is then also approximately un-
conditionally valid, uniformly over P ∈ P.

If the conditional distribution function s 7→ F̃n(s) := Pn+1(y0−m̂n(x0) ≤
s‖Tn) is continuous, then, for 0 ≤ α1 < α2 ≤ 1 fixed, there is an optimal
shortest but infeasible interval

PI(OPT )
α1,α2

= (m̂n(x0) + q̃α1 , m̂n(x0) + q̃α2 ](2.2)

in the set of all prediction intervals PI of the form PI = PI(Tn, x0) =
(m̂n(x0) + L(Tn), m̂n(x0) + U(Tn)] that also satisfy

Pn+1
(
y0 ≤ inf PI

∥∥∥Tn) = α1, and(2.3)

Pn+1
(
y0 ≥ supPI

∥∥∥Tn) = 1− α2 :(2.4)

Simply choose q̃α1 to be the largest α1-quantile of F̃ and q̃α2 to be the small-
est α2-quantile of F̃n. This gives the user the flexibility to choose precisely
what error probability of under and over-prediction she is willing to accept.

Thus, for PI
(OPT )
α1,α2 , (2.1) is actually equal to zero (for α1+1−α2 = α), at least

if P contains only probability distributions on Z for which F̃n : R → [0, 1]
is almost surely continuous.

We propose the following simple jackknife-type idea to approximate the
optimal infeasible procedure: For α ∈ [0, 1], let q̂α denote an empirical α-

quantile of the sample û1, . . . , ûn of leave-one-out residuals ûi = yi−m̂[i]
n (xi).

To be more precise, we set q̂α = û(dnαe) if α > 0 and q̂0 = û(1) − e−n (any
number strictly less than û(1) would do), where û(1) ≤ û(2) ≤ · · · ≤ û(n) are
the order statistics of the leave-one-out residuals. Then the leave-one-out
prediction interval is given by

PI(L1O)
α1,α2

(Tn, x0) = m̂n(x0) +
(
q̂α1 , q̂α2

]
.(2.5)
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Excluding the left endpoint turns out to be convenient for proving
Lemma 2.1 below. The random distribution functions

F̂n(s) := F̂n(s;Tn) :=
1

n

n∑
i=1

1(−∞,s](ûi)(2.6)

and

F̃n(s) := F̃n(s;Tn) := Pn+1(y0 − m̂n(x0) ≤ s‖Tn),(2.7)

s ∈ R, play a crucial role in the analysis of the leave-one-out prediction
intervals.

The idea behind the leave-one-out procedure is remarkably simple. To
estimate the conditional distribution F̃n of the prediction error y0− m̂n(x0)
we simply use the empirical distribution F̂n of the leave-one-out residuals

ûi = yi − m̂
[i]
n (xi). Notice that m̂n is independent of (x0, y0), and m̂

[i]
n is

independent of (xi, yi), and thus, ûi has almost the same distribution as the

prediction error, except that m̂
[i]
n is calculated from one observation less than

m̂n. In many cases this difference turns out to be negligible if n is large, even
if p is relatively large too. Note, however, that the leave-one-out residuals
(ûi)

n
i=1 are not independent.

The following elementary result shows that, indeed, the main ingredient
to establish conditional validity (2.1) of the leave-one-out prediction interval
in (2.5) is consistent estimation of F̃n in Kolmogorov distance.

Lemma 2.1. For 0 ≤ α1 < α2 ≤ 1, and if the fixed (non-random) train-
ing sample tn ∈ Zn is such that the leave-one-out residuals ûi = ûi(tn),
i = 1, . . . , n, are all distinct, then the leave-one-out prediction interval de-
fined in (2.5) satisfies∣∣∣∣P (y0 ∈ PI(L1O)

α1,α2
(tn, x0)

)
− dnα2e − dnα1e

n

∣∣∣∣ ≤ 2‖F̂n − F̃n‖∞.

Remark 2.2. Note that the inequality of Lemma 2.1 is a purely al-
gebraic statement for a fixed training set tn. Also note that the coverage

probability P (y0 ∈ PI(L1O)
α1,α2 (tn, x0)) is a version of the conditional probabil-

ity Pn+1(y0 ∈ PI(L1O)
α1,α2 (Tn, x0)‖Tn = tn).

Proof of Lemma 2.1. By definition,

P
(
y0 ∈ PI(L1O)

α1,α2
(tn, x0)

)
= F̃n(q̂α2)− F̃n(q̂α1)

= F̃n(q̂α2)− F̂n(q̂α2) + F̂n(q̂α1)− F̃n(q̂α1) + F̂n(q̂α2)− F̂n(q̂α1).
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For α1 > 0,

nF̂n(q̂α2)− nF̂n(q̂α1) =
∣∣{i ≤ n : û(i) ≤ û(dnα2e)}

∣∣− ∣∣{i ≤ n : û(i) ≤ û(dnα1e)}
∣∣

= dnα2e − dnα1e,

and nF̂n(q̂α2)− nF̂n(q̂0) =
∣∣{i ≤ n : û(i) ≤ û(dnα2e)}

∣∣− 0 = dnα2e. Thus,

F̂n(q̂α2)− F̂n(q̂α1) =
dnα2e − dnα1e

n
,

which concludes the proof.

By virtue of Lemma 2.1, most of what follows will be concerned with
the analysis of ‖F̂n − F̃n‖∞. We are particularly interested in situations
where, for a fixed x ∈ X , m̂n(x) does not concentrate around mP (x)
with high probability but remains random (cf. Remark 5.2 below). In
such cases, the unconditional distribution function of the prediction error
Pn+1(y0− m̂n(x0) ≤ s) = EPn [F̃n(s)], the empirical distribution function of
the ordinary residuals 1

n

∑n
i=1 1(−∞,s](yi − m̂n(xi)) and the true error dis-

tribution function P (y0 − mP (x0) ≤ s) need not be close to one another,
because m̂n may not contain enough information about the true regression
function mP (see, for instance, Bickel and Freedman (1983) and Bean et al.
(2013) for a linear regression example where mP (x) = x′βP )1. Nevertheless,
we will see that even in such a challenging scenario, it is often possible to
estimate the conditional distribution F̃n of y0 − m̂n(x0), given the training
sample Tn, by the empirical distribution F̂n of the leave-one-out residuals.

2.2. The role of algorithmic stability. In this section we present general
results that relate the uniform estimation error ‖F̂n − F̃n‖∞ to a measure
of stability of the estimator m̂n. For our first result, sample size n ≥ 2 and
dimension p ≥ 1 are fixed. We only need the following condition on the class
of distributions P on Z = X × Y.

(C1) Under every P ∈ P, the distribution of z0 = (x0, y0) has the following
properties:2 The regression function x 7→ mP (x) = EP [y0‖x0 = x]

1It turns out, however, at least in the linear model mP (x) = x′βP and for appropriate
estimators of βP , that the conditional distribution of the prediction error F̃n does stabilize
at its mean, i.e., the unconditional distribution, even if n and p are of the same order of
magnitude (cf. Section 3.3 and Lemma A.7 in the proof of Theorem 3.4).

2To be formally precise, one should interpret x0 as the identity mapping of X ⊆ Rp
onto itself and y0 as the identity mapping of Y ⊆ R onto itself.
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exists and the error term u0 := y0 − mP (x0) is independent of the
regressor vector x0 and has a Lebesgue density fu,P with ‖fu,P ‖∞ <
∞.

Remark 2.3. The boundedness of the error density fu,P can be relaxed
to a Hölder condition on the cdf of u0 at the expense of a slightly more
complicated theory.

Remark 2.4. Note that by continuity of the cdf of the error distribution
u0, for every α ∈ [0, 1], there exists a quantile qu,P (α) such that P (u0 ≤
qu,P (α)) = α. However, qu,P (α) may not be uniquely determined by this
requirement.

Building on terminology from Bousquet and Elisseeff (2002) (see also
Devroye and Wagner (1979)), we use the following notion of algorithmic
stability.

Definition 1. For η > 0 and P as in (C1), we say the predictor m̂n is
η-stable with respect to P if

sup
P∈P

EPn+1

[(
‖fu,P ‖∞

∣∣∣m̂n(x0)− m̂[i]
n (x0)

∣∣∣) ∧ 1
]
≤ η, ∀i = 1, . . . , n.

By exchangeability of z0, z1, . . . , zn, it is easy to see that a symmetric
predictor m̂n is η-stable w.r.t. P if, and only if, EPn+1 [(‖fu,P ‖∞|m̂n(x0) −
m̂

[1]
n (x0)|)∧ 1] ≤ η for all P ∈ P. Also note that a 0-stable predictor can not

depend on the training data in a non-trivial way (cf. Lemma B.4).

We are now in the position to state our main result on the estimation of
F̃n(s) = Pn+1(y0 − m̂n(x0) ≤ s‖Tn) by F̂n(s) = 1

n

∑n
i=1 1(−∞,s](ûi).

Theorem 2.5. Suppose the class P satisfies Condition (C1) and the
estimator m̂n is symmetric and η-stable w.r.t. P. Then, for every P ∈ P,
every L ∈ [1,∞) and every µ ∈ R, we have

EPn
[
‖F̂n − F̃n‖∞

]
≤ P (|y0 −mP (x0)| > L)

+ Pn+1(|mP (x0)− m̂n(x0)− µ| > L)

+ 3

(
L‖fu,P ‖∞

(
1

2n
+ 3η

))1/3

+

√
1

n
+ 6η.

For illustration and later use we also provide an asymptotic version of
this result.
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Corollary 2.6. For n ∈ N, let p = pn be a sequence of positive in-
tegers and let Pn be as in (C1) but with X = Xn ⊆ Rpn depending on
n. Suppose that for P ∈ Pn, there exists σ2

P = σ2
P,n ∈ (0,∞) such that

lim supn→∞ supP∈Pn ‖fu/σP ,P ‖∞ < ∞, where fu/σP ,P (s) := σP fu,P (sσP ) is
the scaled error density. Moreover, assume that the estimator m̂n is symmet-
ric and ηn-stable w.r.t. Pn, such that ηn → 0 as n → ∞. If the scaled esti-
mation errors |mP (x0)−m̂n(x0)|/σP and the scaled errors |y0−mP (x0)|/σP
both are Pn-uniformly bounded, then

sup
P∈Pn

EPn
[
‖F̂n − F̃n‖∞

]
−−−→
n→∞

0.

Moreover, for 0 ≤ α1 < α2 ≤ 1, the leave-one-out prediction interval is
uniformly asymptotically conditionally valid, i.e.,

sup
P∈Pn

EPn
[∣∣∣Pn+1

(
y0 ∈ PI(L1O)

α1,α2
(Tn, x0)

∥∥∥Tn)− (α2 − α1)
∣∣∣] −−−→

n→∞
0.

Proof. Apply Theorem 2.5 with L = lnσP , µ = 0 and ln = o
(

1
2n + 3ηn

)
,

ln → ∞ as n → ∞. For the second claim, note that under (C1), Pn(û1 =
û2) = 0 and apply Lemma 2.1.

Theorem 2.5 provides an upper bound on the risk of estimating the con-
ditional prediction error distribution F̃n by the empirical distribution of the
leave-one-out residuals F̂n. The upper bound crucially relies on the prop-
erties of the chosen estimator m̂n for the true unknown regression function
mP . If the sample size is sufficiently large and if the estimator is sufficiently
stable and has a moderate estimation error, then the parameter L can be
chosen such that the upper bound is small. This is what we do in Corol-
lary 2.6. It is important to note that Theorem 2.5 and Corollary 2.6 are
informative also in case the estimator m̂n is not consistent for mP , as is
often the case when p/n 9 0. The bound of Theorem 2.5 also exhibits an
interesting trade-off between the η-stability of m̂n and the magnitude of
its estimation error. More stable estimators are allowed to be less accurate
whereas less stable estimators need to achieve higher accuracy in order to
be as reliable for predictive inference purposes as a more stable algorithm.

The proof of Theorem 2.5 relies, among other things, on a result of Bous-
quet and Elisseeff (2002) which bounds the L2-distance between the gen-
eralization error of a predictor m̂n (i.e., EPn+1 [(y0 − m̂n(x0))2‖Tn]) and its
estimate based on leave-one-out residuals, in terms of the stability properties
of m̂n. See Section A.1 for details.
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Theorem 2.5 and Corollary 2.6 show that the leave-one-out prediction
interval in (2.5) is approximately uniformly conditionally valid, i.e., has the
property that (2.1) is small at least for large n, provided that the underlying
estimator m̂n has two essential properties. First, the estimator must be η-
stable with respect to the class P over which uniformity is desired, with an
η value that is small if n is large. More precisely, we require

ηn = sup
P∈Pn

EPn+1

[(
‖fu,P ‖∞|m̂n(x0)− m̂[1]

n (x0)|
)
∧ 1
]
−−−→
n→∞

0.(2.8)

This is an intuitively appealing assumption since otherwise the leave-one-out

residuals ûi = yi − m̂[i]
n (xi) may not be well suited to estimate the distri-

bution of the prediction error y0 − m̂n(x0). Second, the scaled estimation
error (mP (x0)− m̂n(x0))/σP at the new observation x0 must be bounded in
probability, uniformly over the class P. Formally,

lim sup
n→∞

sup
P∈Pn

Pn+1

(
|mP (x0)− m̂n(x0)|

σP
> M

)
−−−−→
M→∞

0.(2.9)

This is used to guarantee that the conditional distribution F̃n of the pre-
diction error y0 − m̂n(x0) given the training data is tight in an appropriate
sense (cf. Lemma A.3(ii)), so that a pointwise bound on |F̂n(t)− F̃n(t)| can
be turned into a uniform bound. The remainder of this paper is therefore
mainly concerned with verifying these two conditions on the estimator m̂n

in several different contexts. From now on, as in Corollary 2.6, we will take
on an asymptotic point of view.

3. Linear prediction with many variables. In this section we in-
vestigate a scenario in which both consistent parameter estimation as well
as bootstrap consistency fail (cf. Bickel and Freedman, 1983; El Karoui and
Purdom, 2015), but the leave-one-out prediction interval is still asymptoti-
cally uniformly conditionally valid. See Section 4 for a discussion of scenarios
where consistent parameter estimation is possible. For κ ∈ [0, 1), we fix a
sequence of positive integers (pn), such that pn/n → κ as n → ∞ and
n > pn + 1 for all n ∈ N. In case κ > 0, this type of ‘large p, large n’
asymptotics has the advantage that certain finite sample features of the
problem are preserved in the limit, while offering a workable simplification.
It turns out that conclusions drawn from this type of asymptotic analyses
often provide remarkably accurate descriptions of finite sample phenomena.

When working with linear predictors m̂n(x0) = x′0β̂n, and if the feature
vectors xi have second moment matrix ΣP = EP [x0x

′
0] under P , the condi-
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tions (2.8) and (2.9) can be verified as follows. For ε > 0,

EPn+1

[(
‖fu,P ‖∞|m̂n(x0)− m̂[1]

n (x0)|
)
∧ 1
]

≤
(
1 ∨ ‖fu/σP ,P ‖∞

)(
Pn+1

(
|x′0β̂n − x′0β̂

[1]
n |

σP
> ε

)
+ ε

)

≤
(
1 ∨ ‖fu/σP ,P ‖∞

)(
EPn

[(
1

ε2

∥∥∥Σ
1/2
P

(
β̂n − β̂[1]

n

)
/σP

∥∥∥2

2

)
∧ 1

]
+ ε

)
,

where, for the second inequality, we have used the conditional Markov in-
equality along with independence of x0 and Tn. Thus (2.8) follows if the
scaled error densities fu/σP ,P , P ∈ Pn, n ∈ N, are uniformly bounded and

(3.1) sup
P∈Pn

Pn
(∥∥∥Σ

1/2
P

(
β̂n − β̂[1]

n

)∥∥∥
2
/σP > ε

)
−−−→
n→∞

0,

for each ε > 0. By a similar argument, we find that (2.9) follows if

lim sup
n→∞

sup
P∈Pn

Pn
(∥∥∥Σ

1/2
P

(
β̂n − βP

)∥∥∥
2
/σP > M

)
−−−−→
M→∞

0 and(3.2)

lim sup
n→∞

sup
P∈Pn

P

(
|mP (x0)− x′0βP |

σP
> M

)
−−−−→
M→∞

0,(3.3)

for some vectors βP ∈ Rpn , P ∈ Pn, n ≥ 1.

3.1. Regularized M -estimators. An important class of linear predictors
for which our theory on the leave-one-out prediction interval applies are
those based on regularized M -estimators investigated by El Karoui (2018)
in the challenging scenario where p/n is not close to zero (see also Bean
et al., 2013; El Karoui, 2013; El Karoui et al., 2013). For a given convex
loss function ρ : R→ R and a fixed tuning parameter γ ∈ (0,∞) (both not
depending on n), consider the estimator

(3.4) β̂(ρ)
n := argminb∈Rp

1

n

n∑
i=1

ρ(yi − x′ib) +
γ

2
‖b‖22.

In a remarkable tour de force, El Karoui (2018) studied the estimation er-

ror ‖β̂(ρ)
n − β‖2 as p/n → κ ∈ (0,∞), in a linear model yi = x′iβ + ui,

allowing for heavy tailed errors (including the Cauchy distribution) and
non-spherical design (see Section 2.1 in El Karoui, 2018, for details on the

technical assumptions). In particular, the author shows that ‖β̂(ρ)
n − β‖2
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converges in probability to a deterministic positive and finite quantity
rρ(κ) and characterizes the limit through a system of non-linear equations.
On the way to this result, El Karoui (2018, Theorem 3.9 together with
Lemma 3.5 and the ensuing discussion) also establishes the stability prop-

erty ‖β̂(ρ)
n − β̂(ρ)

n,[1]‖2 → 0 in probability. Thus, under the assumptions main-

tained in that reference, (3.1), (3.2) and (3.3) hold, and the leave-one-out

prediction interval (2.5) based on the linear predictor m̂n(x0) = x′0β̂
(ρ)
n is

asymptotically conditionally valid, provided that also the boundedness con-
dition lim supn→∞ supP∈Pn ‖fu/σP ,P ‖∞ < ∞ of Corollary 2.6 is satisfied.
Finally, we note that a detailed assessment of the predictive performance of

β̂
(ρ)
n in dependence on ρ requires a highly non-trivial analysis of rρ(κ). For

the asymptotic validity of the leave-one-out prediction interval, however, all
the information needed on rρ(κ) is that it is finite.

3.2. James-Stein type estimators. Another important example is the

class of linear predictors m̂n(x0) = x′0β̂
(JS)
n based on James-Stein type es-

timators β̂
(JS)
n defined below. Here, we can allow for the following class of

data generating processes.

(C2) Fix finite constants C0 > 0 and c0 > 0 and probability measures Ll
and Lw on (R,B(R)), such that Lw has mean zero, unit variance and
finite fourth moment,

∫
s2Ll(ds) = 1 and Ll((−c0, c0)) = 0.

For every n ∈ N, the class Pn = Pn(Ll,Lw, C0) consists of all proba-
bility measures on Zn ⊆ Rpn+1, such that the distribution of (x0, y0)
under P ∈ Pn has the following properties: The x0-marginal distribu-
tion of P is given by

x0
L
= l0Σ

1/2
P (w1, . . . , wpn)′,

where w1, . . . , wpn are i.i.d. according to Lw, l0
L
= Ll is independent of

the wj and Σ
1/2
P is the unique symmetric positive definite square root

of a positive definite pn × pn covariance matrix ΣP .
The response y0 has mean zero and its conditional distribution given
the regressors x0 under P is

y0‖x0
L
= mP (x0) + σP v0,

where v0 is independent of x0 and has mean zero, unit variance and
fourth moment bounded by C0, where mP : Rpn → R is some measur-
able regression function with EP [mP (x0)] = 0 and σP ∈ (0,∞).



Steinberger, Leeb / Conditional predictive inference for stable algorithms 17

In words, under the distributions in Pn, the feature/response pair (x0, y0)
follows a non-Gaussian random design non-linear regression model with re-
gression function mP and error variance σP . Moreover, the feature vectors xi
are allowed to have a complex geometric structure, in the sense that the stan-

dardized design vector Σ
−1/2
P x1 is not necessarily concentrated on a sphere

of radius
√
pn, as would be the case if Ll was supported on {−1, 1} (see,

e.g., El Karoui (2010, Section 3.2) and El Karoui (2018, Section 2.3.1) for
further discussion of this point). The model Pn in (C2) is non-parametric,
because the regression function mP is unrestricted, up to being centered,
and the error distribution is arbitrary, up to the requirements EP [v0] = 0,
EP [v2

0] = 1 and EP [v4
0] ≤ C0.

To predict the value of y0 from x0 and a training sample Tn = (xi, yi)
n
i=1

with n ≥ pn+2, generated from Pn, we consider linear predictors m̂n(x0) =
x′0β̂n(c), where β̂n(c) is a James-Stein-type estimator given by

β̂n(c) =


(

1− cpnσ̂2
n

β̂′nX
′Xβ̂n

)
+
β̂n, if β̂′nX

′Xβ̂n > 0,

0, if β̂′nX
′Xβ̂n = 0,

for a tuning parameter c ∈ [0, 1]. Here β̂n = (X ′X)†X ′Y , σ̂2
n = ‖Y −

Xβ̂n‖22/(n − pn). The corresponding leave-one-out estimator β̂
[i]
n (c) is de-

fined equivalently, but with X and Y replaced by X[i] and Y[i]. Note that
the leave-one-out equivalent of σ̂2

n = σ̂2
n(X,Y ) is given by

σ̂2
n,[i](X[i], Y[i]) = σ̂2

n−1(X[i], Y[i]) = ‖Y[i] −X[i]β̂
[i]
n ‖22/(n− 1− pn).

The ordinary least squares estimator β̂n belongs to the class of James-Stein
estimators. In particular, β̂n(0) = β̂n, because, with PX := X(X ′X)†X ′, we
have ‖PXY ‖22 = β̂′nX

′Xβ̂n = 0 if, and only if, Y ∈ span(PX)⊥ = span(X)⊥,
and the latter clearly implies β̂n = 0.

Using James-Stein type estimators for prediction is motivated, e.g., by the
optimality results of Dicker (2013) and the discussion in Huber and Leeb
(2013). The next result shows that in the model (C2) with pn/n → κ ∈
(0, 1) and if the deviation from a linear model is not too severe, the James-
Stein-type estimators are sufficiently stable and their estimation errors are
uniformly bounded in probability, just as required in (3.1) and (3.2).

Theorem 3.1. For every n ∈ N, let Pn = Pn(Ll,Lw, C0) be as in Con-
dition (C2) and suppose that under every P ∈ Pn, the error term v0 in
(C2) has a Lebesgue density. For P ∈ Pn, define βP to be the minimizer of
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β 7→ EP [(y0 − β′x0)2] over Rpn. If pn/n → κ ∈ [0, 1), 0 ≤ cn ≤ 1 for all
n ∈ N, and

lim sup
n→∞

sup
P∈Pn

EP

[(
mP (x0)− x′0βP

σP

)2
]
< ∞,(3.5)

then the positive part James-Stein estimator β̂n(cn) satisfies (3.2), i.e.,

lim sup
n→∞

sup
P∈Pn

Pn
(∥∥∥Σ

1/2
P (β̂n(cn)− βP )/σP

∥∥∥
2
> M

)
−−−−→
M→∞

0.

If, in addition, κ > 0, then for every ε > 0, (3.1) is also satisfied, i.e.,

sup
P∈Pn

Pn
(∥∥∥Σ

1/2
P (β̂n(cn)− β̂[1]

n (cn))/σP

∥∥∥
2
> ε
)
−−−→
n→∞

0.

Remark 3.2. Under the assumptions of Theorem 3.1, uniform asymp-
totic conditional validity of the leave-one-out prediction interval follows,
provided that, in addition, the errors v0 in Condition (C2) have uniformly
bounded densities (cf. Corollary 2.6). To see this, note that (3.1) and (3.2)
are conclusions of the theorem, that uniformly bounded fourth moment of
the error implies Pn-uniform boundedness and that (3.3) is a consequence
of assumption (3.5).

Remark 3.3. The last statement of Theorem 3.1 can also be established
for the case κ = 0 but would require a slightly different proof strategy. Since
this case is statistically less interesting we omit it for the sake of brevity.

3.3. Ordinary least squares and interval length. We investigate the
special case of the ordinary least squares predictor m̂n(x) = x′β̂n =
x′(X ′X)†X ′Y in some more detail, because here also the length∣∣∣PI(L1O)

α1,α2

∣∣∣ = q̂α2 − q̂α1 ,

of the leave-one-out prediction interval (2.5) permits a reasonably simple

asymptotic characterization. We consider a class P(lin)
n = P(lin)

n (Ll,Lw,Lv)
which is a subset of the one of Condition (C2), with the additional assump-
tion that the regression function mP is linear and that the error distribution
is fixed (up to arbitrary scaling).

(C3) Fix a finite constant c0 > 0 and probability measures Ll, Lw and Lv
on (R,B(R)), such that Lw and Lv have mean zero, unit variance and
finite fourth moment,

∫
s2Ll(ds) = 1 and Ll((−c0, c0)) = 0.
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For every n ∈ N, the class P(lin)
n = P(lin)

n (Ll,Lw,Lv) consists of all
probability measures on Rpn+1, such that the distribution of (x0, y0)
under P ∈ Pn has the following properties: The x0-marginal distribu-
tion of P is given by

x0
L
= l0Σ

1/2
P (w1, . . . , wpn)′,

where w1, . . . , wpn are i.i.d. according to Lw, l0
L
= Ll is independent of

the wj and Σ
1/2
P is the unique symmetric positive definite square root

of a positive definite pn × pn covariance matrix ΣP .
The conditional distribution of the response y0 given the regressors x0

under P is
y0‖x0

L
= x′0βP + σP v0,

where v0
L
= Lv is independent of x0, and where βP ∈ Rpn and σP ∈

(0,∞).

Note that under (C3), the distributions Ll, Lw and Lv are fixed, so that

P(lin)
n is a parametric model indexed by βP , ΣP and σP . However, these

parameters may depend on sample size n, and the dimension pn of βP and
ΣP may increase with n. Subsequently, we aim at uniformity in these pa-
rameters.

Theorem 3.4. Fix α ∈ [0, 1]. For every n ∈ N, let Pn =

P(lin)
n (Ll,Lw,Lv) be as in (C3). If pn/n→ κ ∈ (0, 1) then the scaled empiri-

cal α-quantile q̂α/σPn of the leave-one-out residuals ûi = yi−x′iβ̂
[i]
n based on

the OLS estimator β̂n = (X ′X)†X ′Y converges Pn-uniformly in probability
to the corresponding α-quantile qα of the distribution of

lNτ + v

and l, N, τ and v are defined as follows: l
L
= Ll, N

L
= N (0, 1), and v

L
= Lv

are independent, and τ = τ(Ll, κ) is non-random.

The same statement holds also for κ = 0, provided that, in addition, Lv
has a continuous and strictly increasing cdf and pn →∞ as n→∞.

Here, the function κ 7→ τ(Ll, κ) ∈ [0,∞) defined on [0, 1) has the following
properties: For any Ll as in (C3), τ(Ll, κ) = 0 if, and only if, κ = 0. If
Ll({−1, 1}) = 1, then τ(Ll, κ) =

√
κ/(1− κ).

Theorem 3.4 shows how the length q̂α2−q̂α1 of the leave-one-out prediction
interval for the OLS predictor depends (asymptotically) on Ll, Lv and κ =
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limn→∞ pn/n. For simplicity, let Ll({−1, 1}) = 1 and consider an equal
tailed interval, i.e., α1 = α/2 = 1− α2. Figure 1 shows asymptotic interval
lengths as functions of κ ∈ [0, 1] for different values of error level α in the
cases Lv = Unif{−1, 1} and Lv = N (0, 1). For a wide range of κ values (κ ∈
[0, 0.8]), the interval length is almost constant. However, for high dimensional
problems (κ > 0.8) the interval length increases dramatically, as expected,
because here the asymptotic estimation error τ =

√
κ/(1− κ) explodes. We

also get an idea about the impact of the error distribution, on which the
practitioner has no handle. In particular, for large error levels (α = 0.6)
we even observe a non-monotonic dependence of the interval length on κ,
which seems rather counterintuitive. This results from the non-monotonicity
of τ2 7→ IQRα(N (0, τ2) ∗Lv) = q1−α/2− qα/2, where ∗ denotes convolution,
which may only occur if the error distribution Lv is not log-concave (e.g., the
blue curve for α = 0.6 in Figure 1; cf. the discussion in Section 5.1). Finally,
for large values of κ, and thus, for large values of τ , the error distribution
has little effect on the interval length, because in that case the term Nτ
dominates the distribution of Nτ + v.

The result of Theorem 3.4 can be intuitively understood as follows. If the

true model P(lin)
n is linear and satisfies (C3) then the scaled prediction error

under P ∈ P(lin)
n is distributed as

y0 − m̂n(x0)

σP

L
= l0(w1, . . . , wpn)Σ

1/2
P (βP − β̂n)/σP + v0,

and for n large, ‖Σ1/2
P (βP − β̂n)/σP ‖2 ≈ τ is approximately non-random,

so that (w1, . . . , wpn)Σ
1/2
P (βP − β̂n)/σP ≈ w′0Zτ , where Z := Σ

1/2
P (βP −

β̂n)/‖Σ1/2
P (βP − β̂n)‖2 is a random unit vector that is independent of

w0 = (w1, . . . , wpn)′. Thus, if pn is large and Z satisfies the Lyapounov
condition ‖Z‖2+δ → 0, then w′0Z ≈ N (0, 1) (see Lemma A.7(ii)). This ef-
fect of additional Gaussian noise in the prediction error was also observed
by El Karoui (2013, 2018); El Karoui et al. (2013); El Karoui and Purdom

(2015). Note, however, that the conditions ‖Σ1/2
P (βP − β̂n)/σP ‖2 ≈ τ and

‖Z‖2+δ → 0 are not necessarily satisfied for any estimator β̂n. The former
condition is indeed more generally satisfied by robust M -estimators of the
form

β̂(ρ)
n = argminb∈Rp

1

n

n∑
i=1

ρ(yi − x′ib),

considered in El Karoui (2013, 2018) and under the model assumptions in
that reference (cf. Section 3.1). Here, ρ : R → R is an appropriate convex
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loss function. If ‖Σ1/2
P (βP − β̂(ρ)

n )/σP ‖2 ≈ τ <∞ holds, then the Lyapounov

condition ‖Z‖2+δ → 0 is also satisfied by β̂
(ρ)
n , provided that the standard-

ized design vectors Σ
−1/2
P xi follow an orthogonally invariant distribution,

because then one easily sees that

β̂(ρ)
n = βP + Σ

−1/2
P β̃(ρ)

n
L
= βP + ‖β̃(ρ)

n ‖2Σ
−1/2
P U,

where β̃
(ρ)
n = argminb∈Rp

1
n

∑n
i=1 ρ(ui − x′iΣ

−1/2
P b) and U is uniformly dis-

tributed on the unit sphere and independent of ‖β̃(ρ)
n ‖2 = ‖Σ1/2

P (βP −
β̂

(ρ)
n )/σP ‖2, which is itself approximately constant equal to τ . However, this

distributional invariance of the estimator, which is required for the Lya-
pounov property to hold, is not satisfied, e.g., by the James-Stein estimators
(cf. Lemma B.3). If the mentioned conditions are not satisfied, much more
complicated limiting distributions of the prediction error than the one of
Theorem 3.4 may arise.

3.4. Sample splitting. An obvious alternative to the leave-one-out pre-
diction interval (2.5) is to use a sample splitting method as follows. Decide
on a fraction ν ∈ (0, 1) and use only a number n1 = dνne of observation pairs
(xi, yi), i ∈ Sν ⊆ {1, . . . , n}, |Sν | = n1, to compute an estimate m̂n1 . Now use

the remaining n−n1 observations to compute residuals û
(ν)
i = yi− m̂n1(xi),

i ∈ {1, . . . , n} \ Sν . Since, conditionally on the observations corresponding
to Sν , these residuals are i.i.d. and distributed as y0 − m̂n1(x0), construct-
ing a prediction interval of the form [m̂n1(x0) + L, m̂n1(x0) + U ] for y0 is
now equivalent to constructing a tolerance interval for y0 − m̂n1(x0) based
on i.i.d. observations with the same distribution. One can now simply use

appropriate empirical quantiles L = q̂
(ν)
α1 and U = q̂

(ν)
α2 from the sample split-

ting residuals û
(ν)
i (see also Section 5.2). Such a procedure is suggested, e.g.,

by Vovk (2012) and Lei et al. (2017).

In order to formally study the length of this sample splitting interval we
restrict to the case of OLS estimation, i.e., m̂n1(x) = x′β̂n1 . Note that in
this case, the estimator will not be unique if n1 < pn, so one usually re-
quires n1 ≥ pn. Now, by the same mechanism as discussed in Section 3.3,

the empirical quantiles of the residuals û
(ν)
i , i ∈ Scν , converge (uncondition-

ally) to the quantiles of lNτ ′ + u, where now τ ′ is the non-random limit

of ‖Σ1/2
P (βP − β̂n1)/σP ‖2. In particular, if Ll degenerates to {−1, 1}, then

τ ′ =
√
κ′/(1− κ′), where κ′ = limn→∞ pn/n1 = κ/ν. Thus, we can read

off the asymptotic interval length of the sample splitting procedure from
Figure 1 by simply adjusting the value of κ to κ/ν. For instance, in the



22 Steinberger, Leeb / Conditional predictive inference for stable algorithms

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

κ = limpn n

P
I l

en
gt

h

binary
Gauss

α = 0.05
α = 0.1
α = 0.4
α = 0.6

Fig 1. Lengths of leave-one-out prediction intervals as a function of κ = limn→∞ pn/n for
confidence level 1− α and with Unif{−1, 1} (binary) and N (0, 1) (Gauss) errors.
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binary error case with α = 0.05, if κ = 0.4 and we use sample splitting
with ν = 1/2, then κ′ = 0.8 and the asymptotic length of the leave-one-out
prediction interval is about 4.7, while the asymptotic length of the sample
splitting interval is about 9, so almost twice as wide.

4. Asymptotically degenerate (non-random) estimators. An-
other important class of problems, where the conditions (2.8) and (2.9) of
Subsection 2.2 are satisfied, are those where the estimator m̂n asymptotically
degenerates to some non-random function which need not be the true re-
gression function mP : X → R. We point out that in the scenario considered
in this section, the naive approach that tries to estimate the true unknown
distribution of the errors ui in the additive error model (C1) based on the or-
dinary residuals yi−m̂n(xi) is often successful (asymptotically) for construct-
ing conditionally valid prediction intervals, provided consistent estimation of
mP . This less challenging but more classical setting of asymptotically non-
random predictors is an important test case for the leave-one-out method.
We still consider asymptotic results where the number of explanatory vari-
ables p = pn can grow with sample size n. Thus, we consider a sequence
(pn)n∈N and a sequence (Pn)n∈N of collections of probability measures on
Zn ⊆ Rpn+1. Moreover, we have to slightly extend the usual definition of
uniform consistency of an estimator sequence to cover also the leave-one-out
estimate and the possibility of an asymptotically non-vanishing bias.

Definition 2 (Uniform Asymptotic Degeneracy (UAD)). For every n ∈
N, let pn ∈ N, let Pn be a collection of probability measures on Zn and let
σ2
n : Pn → (0,∞) be a positive functional on Pn. We say that a sequence

of symmetric predictors m̂n(·) = Mn,pn(Tn, ·) is uniformly asymptotically
degenerate (UAD) with respect to (Pn)n∈N and relative to (σ2

n)n∈N, if there
exists measurable functions gP : Rpn → R, such that for every ε > 0,

sup
P∈Pn

Pn+1
(
|gP (x0)−Mn,pn(Tn, x0)| > εσn(P )

)
−−−→
n→∞

0 and(4.1)

sup
P∈Pn

Pn
(
|gP (x0)−Mn−1,pn(T [1]

n , x0)| > εσn(P )
)
−−−→
n→∞

0.(4.2)

The functional σ2
n(P ) can be thought of, for instance, as the error variance

σ2
n(P ) = VarP [y0−mP (x0)], if it exists. Of course, conditions (4.1) and (4.2)

coincide if the sequences (pn), (σ2
n) and (Pn) are constant. It is also easy to

see that if m̂n is UAD with respect to (Pn) and relative to (σ2
n)n∈N, then
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the sequence of stability constants ηn satisfies (2.8), i.e.,

ηn = sup
P∈Pn

EPn+1

[(
σn(P )‖fu,P ‖∞

|m̂n(x0)− m̂[1]
n (x0)|

σn(P )

)
∧ 1

]
−−−→
n→∞

0,

provided that lim supn→∞ supP∈Pn σn(P )‖fu,P ‖∞ < ∞. Note that
fu/σn,P (v) = σnfu,P (σnv) is the density of the scaled error term
(y0 − mP (x0))/σn under P , with σn = σn(P ). Furthermore, it
is equally obvious that the UAD property of m̂n together with
lim supn→∞ supP∈Pn P (|mP (x0) − gP (x0)| > Mσn(P )) → 0, as M → ∞,
implies (2.9).

In the remainder of this subsection we list a number of examples where
the UAD property of m̂n, and therefore (assuming (C1) and the mentioned
boundedness conditions, including the one on the error (y0 −mP (x0))/σP ,
c.f. Corollary 2.6) also asymptotic conditional validity of the leave-one-out
prediction interval, holds. We emphasize that the conditions on the statisti-
cal model P, that are imposed in the subsequent examples, are taken from
the respective reference and we do not claim that they are minimal.

Example 4.1 (Non-parametric regression estimation). Consider a con-
stant sequence of dimension parameters pn = p ∈ N. For positive finite
constants L and C, let P(L,C) denote the class of probability distributions
P on Z = X × Y ⊆ Rp+1 such that P (|y0| ≤ L) = 1 = P (‖x0‖2 ≤ L) and
whose corresponding regression function mP : Rp → R is C-Lipschitz, i.e.,
|mP (x1) −mP (x2)| ≤ C‖x1 − x2‖2 for all x1, x2 ∈ X . Györfi et al. (2002,
Chapter 7) show that if m̂n is either an appropriate kernel estimate, a par-
titioning estimate or a nearest-neighbor estimate, all with fully data driven
choice of tuning parameter, then

sup
P∈P(L,C)

Pn+1(|m̂n(x0)−mP (x0)| > ε) −−−→
n→∞

0

for every ε > 0. Because of the data driven choice of tuning parameter, which
is usually done by a sample splitting procedure, the estimators in Györfi et al.
(2002) are generally not symmetric in the input data. However, it is easy
to see that symmetrized versions of those estimators are still UAD. Simply
note that it is no restriction to assume |m̂n(x0)−mP (x0)| ≤ 2L, such that
convergence in probability and converges in L1 are equivalent, and study
the L1 estimation error of the symmetrized estimator.

Example 4.2 (High-dimensional linear regression with the LASSO).
Consider a non-decreasing sequence (Kn)n∈N of positive real numbers and
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a sequence of dimension parameters (pn)n∈N such that K4
n log(pn)/n → 0

as n → ∞. For a positive finite constant M , let Pn(M) denote the class of
probability distributions on Rpn+1, such that under P ∈ Pn(M), the pair
(x0, y0) has the following properties:

• ‖x0‖∞ ≤M , almost surely.
• Conditional on x0, y0 is distributed asN (x′0βP , σ

2
P ), for some βP ∈ Rpn

and σ2
P ∈ (0,∞).

• The parameters βP and σ2
P satisfy max(‖βP ‖1, σP ) ≤ Kn.

In particular, we have mP (x0) = x′0βP . Chatterjee (2013, Theorem 1) shows

that any estimator β̂
(Kn)
n which minimizes

β 7→
n∑
i=1

(yi − β′xi)2 subject to ‖β‖1 ≤ Kn

satisfies

sup
P∈Pn(M)

Pn+1
(∣∣∣x′0β̂(Kn)

n −mP (x0)
∣∣∣ > ε

)
−−−→
n→∞

0

for every ε > 0. Clearly, here the leave-one-out estimate has the same asymp-
totic property, because K4

n−1 log pn/(n− 1)→ 0. Note that in this example,
consistent estimation of the parameters βP and σ2

P would require additional
assumptions on the distribution of the feature vector x0 (so called ‘compat-
ibility conditions’, see Bühlmann and van de Geer (2011)), and therefore, it
is not immediately clear whether the standard Gaussian prediction interval
based on estimates β̂n and σ̂2

n and a Gaussian quantile is asymptotically
valid in the present setting. Furthermore, the result of Chatterjee (2013)
can be extended also to the non-Gaussian case, where the standard Gaus-
sian prediction interval certainly fails.

Example 4.3 (Ridge regression with many variables). A qualitatively
different parameter space is considered in Lopes (2015), who shows uniform
consistency of ridge regularized estimators in a linear model under a bound-
edness assumption on the regression parameter βP and a specific decay rate
of eigenvalues of EP [x0x

′
0].

Example 4.4 (Misspecified regression estimation). A classical strand of
literature on the asymptotics of Maximum-Likelihood under misspecification
has established various conditions under which the MLE is not consistent for
the true unknown parameter, but for a pseudo parameter that corresponds
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to the projection of the true data generating distribution onto the main-
tained working model. See, for example, Huber (1967), White (1980a,b) or
Fahrmeir (1990). A common pseudo target in random design regression is
the minimizer of β 7→ EP [(y0 − β′x0)2].

5. Discussion and further remarks. In this section we collect sev-
eral further thoughts on the leave-one-out prediction intervals. We discuss
some properties of the proposed method that we have established above but
which we believe hold in much higher generality. We also draw some further
connections to other methods such as sample splitting, tolerance regions
and prediction regions based on non-parametric density estimation, and we
provide further intuition. Finally, we sketch possible extensions and open
problems.

5.1. Predictor efficiency and interval length. Recall that if Tn ∈ Zn and
P are such that

s 7→ F̃n(s;Tn) = Pn+1(y0 − m̂n(x0) ≤ s‖Tn),

is continuous, the optimal infeasible interval

PI(OPT )
α1,α2

= m̂n(x0) + (q̃α1 , q̃α2 ]

in (2.2) is the shortest interval of the form m̂n(x0) + (L(Tn), U(Tn)] such
that (2.3) and (2.4) are satisfied. In this infeasible scenario, the only way

in which the ‘user’ can influence the length of PI
(OPT )
α1,α2 is via the choice

of predictor m̂n. This choice clearly affects the conditional distribution F̃n
of the prediction error y0 − m̂n(x0) and, thus, potentially its inter-quantile-
range q̃α2−q̃α1 . Since we only care about minimizing the inter-quantile-range
of the conditional distribution F̃n, for the rest of this subsection we consider
the training data Tn to be fixed and non-random. Thus, the predictor m̂n :
Rp → R is also non-random. Now we would like to use a predictor m̂n

such that the prediction error y0 − m̂n(x0) has short inter-quantile-range.
For simplicity, assume that y0 = mP (x0) + u0, where the error term u0 has
mean zero and is independent of the features x0. Therefore, the prediction
error is given by

y0 − m̂n(x0) = mP (x0)− m̂n(x0) + u0,

i.e., the sum of the estimation error mP (x0) − m̂n(x0) and the innovation
u0. Following Lewis and Thompson (1981), we say that a continuous uni-
variate distribution P1 is more dispersed than P0 if, and only if, any two
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quantiles of P1 are further apart than the corresponding quantiles of P0.
Now we note that minimizing the inter-quantile-rage of the prediction error
y0 − m̂n(x0) is, in general, not equivalent to minimizing the inter-quantile-
rage of mP (x0)−m̂n(x0), because of the effect of the error term u0. However,
if the distribution of the error term u0 has a log-concave density, then the

distribution of y0 − m̂(1)
n (x0) is more dispersed than that of y0 − m̂(0)

n (x0),

if, and only if, mP (x0)− m̂(1)
n (x0) is more dispersed than mP (x0)− m̂(0)

n (x0)
(see Theorem 8 of Lewis and Thompson, 1981). Thus, under log-concave er-

ror distributions, interval length of PI
(OPT )
α1,α2 is directly related to prediction

accuracy of the point predictor m̂n in use. These considerations naturally

carry over to the feasible analog PI
(L1O)
α1,α2 defined in (2.5). In Section 3.3,

in the special case of a linear model and ordinary-least-squares prediction,
we have discussed the issue of interval length in some more detail and pro-
vided a rigorous description of the asymptotic interval length in a high-
dimensional regime. This sheds more light on the connection between the

length of PI
(L1O)
α1,α2 and the estimation error mP (x0)− m̂n(x0). However, the

lessons learned from the linear model appear to be valid in a much more
general situation. In particular, we see that, at least for log-concave error
distributions, the lengths of leave-one-out prediction intervals can be used
to evaluate the relative efficiency of competing predictors.

5.2. The case of a naive predictor and sample splitting. Next, we discuss
the important special case where we naively decide to work with a predictor
Mn,p(Tn, x0) = m(x0), m : X → R, that does not depend on the training
data Tn at all.3 In this case, the predictor and its leave-one-out analog
coincide and the (leave-one-out) residuals ûi = yi −m(xi) for i = 1, . . . , n,
are actually independent and identically distributed according to the non-
random distribution F̃n(s) = Pn+1(y0−m(x0) ≤ s‖Tn) = P (y0−m(x0) ≤ s)
and F̂n is their empirical distribution function. Therefore, by Lemma 2.1 and
the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Massart, 1990), if F̃n is
continuous, we get for every ε > 0 that

Pn
(∣∣∣∣P (y0 ∈ PI(L1O)

α1,α2
(Tn, x0)

)
− dnα2e − dnα1e

n

∣∣∣∣ > ε

)
≤ 2 exp

(
−nε

2

2

)
.

3Note that this covers, in particular, the case where we do not even use, or do not have
available, the feature vectors x0, . . . , xn, i.e., m ≡ 0. In this case, a prediction interval for
y0 that is only based on y1, . . . , yn is more commonly referred to as a tolerance interval.
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Integrating this tail probability also yields

sup
P∈P

EPn
[∣∣∣∣P (y0 ∈ PI(L1O)

α1,α2
(Tn, x0)

)
− dnα2e − dnα1e

n

∣∣∣∣] ≤
√

2π

n
,

where P contains all probability measures on Rp+1 for which F̃n is continu-
ous. We also point out that in the present case where the predictor does not
depend on Tn, the problem of constructing a prediction interval for y0 can
actually be reduced to finding a non-parametric univariate tolerance interval
for y0−m(x0) based on the i.i.d. copies (yi−m(xi))

n
i=1. For this problem clas-

sical solutions are available, based on the theory of order statistics of i.i.d.
data (cf. Krishnamoorthy and Mathew, 2009, Chapter 8). Unfortunately, the
problem changes dramatically, once we try to learn the true regression func-
tion mP from the training data Tn and use m̂n(x0) = Mn,p(Tn, x0) to predict
y0, because then the leave-one-out residuals are no longer independent and
the conditional distribution function F̃ of the prediction error y0 − m̂n(x0)
given Tn is random. Thus, in the general case we can not expect to ob-
tain equally powerful and elegant results as above and we can not resort
to the theory of order statistics of i.i.d. data. In particular, we note that
the bound of Theorem 2.5 is still somewhat sub-optimal in this trivial case
where the estimator does not depend on the training sample Tn. In that
case, η = 0, but the derived bound still depends on the distribution of the
estimation error mP (x0) −m(x0), even though in that case the alternative
bound obtained above by the DKW inequality does no longer involve the es-
timation error. It is an open problem to establish a concentration inequality
for ‖F̂n − F̃n‖∞ analogous to the DKW inequality but in the general case
of dependent leave-one-out residuals and random F̃n.

The discussion of the previous paragraph also applies to the case where
the predictor m was obtained as an estimator for mP , but from another in-
dependent training sample Sk = (x∗j , y

∗
j )
k
j=1 of k i.i.d. copies of (x0, y0). This

situation can be seen as a sample splitting method, where k of the overall
n+k observations are used to compute the point predictor m = m̂k and the
remaining n observations in Tn are used as a validation set to estimate the
conditional distribution of the prediction error y0 − m̂k(x0) given Sk (and
Tn), from the (conditionally on Sk) i.i.d. residuals yi − m̂k(xi), i = 1, . . . , n.
Such a procedure is discussed, for instance, by Lei et al. (2017) and Vovk
(2012). Note that under the assumptions of the previous paragraph, such
a method is asymptotically conditionally valid if the size n of the valida-
tion set diverges to infinity. However, this method uses only k of the n + k
available observation pairs for prediction, such that the point predictor m̂k

based on Sk is not as efficient as the analogous predictor based on the full
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sample Sk ∪ Tn. This typically results in a larger prediction interval than
necessary, because then the conditional distribution of the prediction error
y0 − m̂k(x0) is usually more dispersed than that of y0 − m̂k+n(x0). See also
the discussion in Subsections 3.4 and 5.1.

5.3. Further remarks.

Remark 5.1 (On exact conditional validity). Suppose that the class P
contains at least the data generating distributions P0 and P1, where for
j ∈ {0, 1}

Pj = Np+1(0, σ2
j Ip+1), σ2

j > 0, σ2
0 6= σ2

1,

and that we decide to predict y0 by some linear predictor m̂n(x0) = x′0β̂n.
We shall show that for every α ∈ (0, 1/2), it is impossible to construct a
prediction interval of the form PIα(Tn, x0) = x′0β̂n+ [Lα(Tn), Uα(Tn)] based
on a finite sample Tn and x0, such that (2.1) is equal to zero.

Proof. If (2.1) is equal to zero, then for both j = 0, 1 and Pnj -almost all
samples Tn,

1− α = Pn+1
j (y0 ∈ PIα(Tn, x0)‖Tn)

= Pn+1
j (Lα(Tn) ≤ y0 − x′0β̂n ≤ Uα(Tn)‖Tn)

= Φ

 Uα(Tn)

σj

√
‖β̂n‖22 + 1

− Φ

 Lα(Tn)

σj

√
‖β̂n‖22 + 1

 .

Since 1− α > 1/2, we must have Lα < 0 < Uα, almost surely, and it is easy
to see that the function

gl,u(ν) := Φ
(u
ν

)
− Φ

(
l

ν

)
, gl,u : (0,∞)→ (0, 1),

is continuous and strictly decreasing, provided that l < 0 < u, and thus, for
such l and u, gl,u is invertible. Therefore, for j = 0, 1 and for Pnj -almost all

samples Tn (equivalently, for Lebesgue almost all Tn ∈ Rn(p+1)), we have

σ̃2
n(Tn) :=

g−1
Lα,Uα

(1− α)√
‖β̂n‖22 + 1

2

= σ2
j .

In other words, there exists Tn ∈ Zn, such that σ2
0 = σ̃2

n(Tn) = σ2
1, a

contradiction.
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Remark 5.2. Consistent estimation of the true regression function mP :
X → R from an i.i.d. sample of size n is usually not possible if the dimension
p of X is non-negligible compared to n. For example, in a Gaussian linear
model where the only unknown parameter is the p-vector β of regression
coefficients, it is impossible to consistently estimate the conditional mean
mP (x0) = EP [y0‖x0] = β′x0, unless p/n → 0 or strong assumptions are
imposed on the parameter space (cf. Dicker, 2012).

Remark 5.3. A natural approach for constructing non-parametric pre-
diction sets is to estimate the conditional density of y0 given x0 (if it exists),
because, as can be easily shown, a highest density region of the conditional
density of y0 given x0 provides the smallest (in terms of Lebesgue measure)
prediction region PRα(x0) for y0 that controls the conditional coverage prob-
ability given x0, i.e., that satisfies

P (y0 ∈ PRα(x)‖x0 = x) ≥ 1− α for P -almost all x.(5.1)

This condition has been called object conditional validity by Vovk (2013).
However, object conditional validity is often too much to ask for. First of all,
as shown by Barber et al. (2019a) (see also Lei and Wasserman, 2014; Vovk,
2013), for continuous distributions there are no non-trivial prediction sets
based on a finite sample that satisfy (5.1). Moreover, even if we are content
with asymptotic object conditional validity, learning the relevant properties
of the conditional density of y0 given x0 is typically only possible if the
dimension of the feature vector x0 is much smaller than the available sample
size (cf. Remark 5.2). Therefore, since our focus in the present paper is on
high-dimensional problems, we do not aim at object conditional validity.

Remark 5.4 (On heteroskedasticity). The length of the leave-one-out
prediction interval in (2.5), as it stands, does not depend on the value of
x0. An immediate way to account for heteroskedasticity is the following.
Consider, in addition, an estimator σ̂2

n(x) = S(Tn, x) of the conditional
variance Var[y0‖x0 = x]. Then a prediction interval can be computed as
m̂n(x0) + (q̂α1 , q̂α2 ]σ̂n(x0), where now, q̂α is an empirical α-quantile of the
leave-one-out residuals

ûi =
yi − m̂[i]

n (xi)

σ̂n,[i](xi)
, i = 1, . . . , n.

Remark 5.5 (Computational simplifications). Computing the leave-
one-out prediction interval may be computationally costly, because the
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model has to be re-fitted n-times on each of the possible reduced sam-

ples T
[i]
n , i = 1, . . . , n, in order to compute the leave-one-out residuals

ûi = yi− m̂[i]
n (xi). Sometimes, it is possible to devise a shortcut for the com-

putation of these residuals. For example, in case of ordinary least squares
prediction m̂n(x) = x′β̂n = x′(X ′X)†X ′Y , if X ′[i]X[i] has full rank, we have
the well known identity

ûi = yi − x′iβ̂[i]
n =

yi − x′iβ̂n
1− x′i(X ′X)−1xi

,

such that the n-vector of leave-one-out residuals can be computed as[
diag(In −X(X ′X)−1X ′)

]−1
(In −X(X ′X)−1X ′)Y.

Hence, the model has to be fitted only once. If such a simplification is not
possible, and the computation of all the residuals ûi, i = 1, . . . , n, is too
costly, then one will typically restrict to using only a smaller number of
those residuals, e.g., ûi, i = 1, . . . , l, with l� n.
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APPENDIX A: PROOFS OF MAIN RESULTS

We repeatedly use the following argument: Suppose that An, n ≥ 1, are
real-valued random variables on (Ω,F , P ) and Fn, n ≥ 1, are sub-sigma
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fields of F . If E[|An|‖Fn] is well-defined and converges to zero in probability,
then An converges to zero in probability. Indeed

P (|An| > ε) = E[P (|An| > ε‖Fn) ∧ 1] ≤ E
[(

1

ε
E[|An|‖Fn]

)
∧ 1

]
.

In this upper bound, the integrand converges to zero in probability by as-
sumption, and this integrand is bounded by 1 by construction. In view of the
dominated convergence theorem, this upper bound converges to zero. More-
over, if E[An‖Fn] is well-defined and converges to c ∈ R in probability and
if, in addition, Var[An‖Fn] → 0 in probability, then An → c in probability.
Indeed,

E[(An − c)2‖Fn] = Var[An‖Fn] + (E[An‖Fn]− c)2

converges to zero in probability. From the preceding statement the claim
follows.

A.1. Proof of Theorem 2.5. The proof relies on the following result,
which is a special case of Lemma 9 (Equation (9)) in Bousquet and Elisseeff
(2002) (see also Devroye and Wagner, 1979) applied with the loss function
`(f, z) = 1(−∞,s](y − f(x)), f : X → Y, z = (y, x) ∈ Z, s ∈ R and M = 1,
in their notation.

Lemma A.1 (Bousquet and Elisseeff (2002)). If the estimator m̂n is
symmetric, then

EPn
[(
F̂n(s)− F̃n(s)

)2
]

≤ 1

2n
+ 3EPn+1

[∣∣∣1(−∞,s](y0 − m̂n(x0))− 1(−∞,s](y0 − m̂[1]
n (x0))

∣∣∣] ,
for every s ∈ R and every probability distribution P on Z.

Under Condition (C1), it is elementary to relate the upper bound of
Lemma A.1 to the η-stability of m̂n. We defer the proof until the end of
this section.

Lemma A.2. Let P be a collection of probability measures on Z = Y×X
that satisfies Condition (C1). Then, for every s ∈ R and every P ∈ P,

EPn+1

[∣∣∣1(−∞,s](y0 − m̂n(x0))− 1(−∞,s](y0 − m̂[1]
n (x0))

∣∣∣]
≤ EPn+1

[(
‖fu,P ‖∞|m̂n(x0)− m̂[1]

n (x0)|
)
∧ 1
]
.
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To turn the pointwise bound of Lemma A.1 into a uniform one, we need
a certain continuity and tightness property of F̃n.

Lemma A.3. Let P be a collection of probability measures on Z = Y×X
that satisfies Condition (C1) and fix a training sample tn ∈ Zn.

(i) If P ∈ P and s1, s2 ∈ R, then∣∣∣F̃n(s1; tn)− F̃n(s2; tn)
∣∣∣ ≤ ‖fu,P ‖∞|s1 − s2|.

(ii) Let P ∈ P, δ ∈ [0, 1], µ ∈ R and c ∈ (0,∞), and define s = µ + c +
qu,P (δ) and s = µ − c + qu,P (δ), where qu,P (δ) ∈ R̄ is an arbitrary
δ-quantile of fu,P . Then,

1− F̃n(s; tn) ≤ (1− δ) + P (mP (x0)−Mn,p(tn, x0)− µ > c) ,

F̃n(s; tn) ≤ δ + P (mP (x0)−Mn,p(tn, x0)− µ < −c) .

We provide the proofs of Lemma A.2 and Lemma A.3 below, after the
main argument is finished. The proof of Theorem 2.5 is now a finite sample
version of the proof of Polya’s theorem. Fix P ∈ P, tn ∈ Zn, µ ∈ R,
ε > 0 and c = L ∈ [1,∞). Set δ1 = Fu,P (−L) and δ2 = Fu,P (L), where
Fu,P (s) :=

∫ s
−∞ fu,P (v) dv. Next, choose the (possibly non-unique) quantiles

qu,P (δ1) = −L and qu,P (δ2) = L and consider s and s as in Lemma A.3(ii)
with δ = δ2 and δ = δ1, respectively, i.e., s = µ + 2L and s = µ − 2L.
We split up the interval [s, s) into K intervals [sj−1, sj), j = 1, . . . ,K, with
endpoints s =: s0 < s1 < · · · < sK := s, such that sj − sj−1 ≤ ε. We may
thus take K = d(s− s)/εe = d4L/εe. If s < s0, then

F̂n(s)− F̃n(s) ≥ 0− F̃n(s0) ≥ −|F̂n(s0)− F̃n(s0)| − F̃n(s0),

F̂n(s)− F̃n(s) ≤ F̂n(s0) ≤ |F̂n(s0)− F̃n(s0)|+ F̃n(s0).

Furthermore, if s ≥ sK , then

F̂n(s)− F̃n(s) ≥ F̂n(sK)− 1

≥ −|F̂n(sK)− F̃n(sK)| −
(

1− F̃n(sK)
)
,

F̂n(s)− F̃n(s) ≤ 1− F̃n(sK)

≤ |F̂n(sK)− F̃n(sK)|+ 1− F̃n(sK).

Finally, for j ∈ {1, . . . ,K} and s ∈ [sj−1, sj),

F̂n(s)− F̃n(s) ≥ −|F̂n(sj−1)− F̃n(sj−1)| −
(
F̃n(sj)− F̃n(sj−1)

)
,

F̂n(s)− F̃n(s) ≤ |F̂n(sj)− F̃n(sj)|+
(
F̃n(sj)− F̃n(sj−1)

)
.
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Thus, discretizing the supremum over R, we get

sup
s∈R
|F̂n(s)− F̃n(s)|

= sup
s<s0
|F̂n(s)− F̃n(s)| ∨ sup

s≥tK
|F̂n(s)− F̃n(s)|

∨ max
j=1,...,K

sup
s∈[sj−1,sj)

|F̂n(s)− F̃n(s)|

≤
(
|F̂n(s0)− F̃n(s0)|+ F̃n(s0)

)
∨
(
|F̂n(sK)− F̃n(sK)|+ 1− F̃n(sK)

)
∨ max
j=1,...,K

([
|F̂n(sj−1)− F̃n(sj−1)| ∨ |F̂n(sj)− F̃n(sj)|

]
+ F̃n(sj)− F̃n(sj−1)

)
.

Next using the abbreviation en,P (x0) = mP (x0) − Mn,p(tn, x0) and both
parts of Lemma A.3, we can further bound this as

max
j=0,...,K

(
|F̂n(sj)− F̃n(sj)|

)
+ ε‖fu,P ‖∞ + δ1 + (1− δ2) + P (|en,P − µ| > c)

= max
j=0,...,K

(
|F̂n(sj)− F̃n(sj)|

)
+ ε‖fu,P ‖∞ + P (|u0| > L) + P (|en,P − µ| > L).

Now, using Lemma 2.1 of Aven (1985), the expectation (w.r.t. the training
data tn) of the maximum can be bounded by K∑

j=0

EPn
[
|F̂n(sj)− F̃n(sj)|2

] 1
2

.

Finally, applying Lemmas A.1 and A.2, the expression on the previous dis-
play is bounded by (

(K + 1)

[
1

2n
+ 3η

]) 1
2

.

We have established the bound

EPn
[
‖F̂n − F̃n‖∞

]
≤ ε‖fu,P ‖∞ + P (|u0| > L) + Pn+1(|en,P − µ| > L)

+

((
4L

ε
+ 2

)[
1

2n
+ 3η

]) 1
2

.

Write νn := 1
2n + 3η. To simplify the minimization over ε, we use√

4L/ε+ 2 ≤
√

4L/ε+
√

2 and minimize

ε 7→ ε‖fu,P ‖∞ +

(
4Lνn
ε

) 1
2

.
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It is easy to see that this is minimized at ε∗ =
( √

Lνn
‖fu,P ‖∞

)2/3
. Plugging this

back into the upper bound yields

EPn
[
‖F̂n − F̃n‖∞

]
≤ P (|u0| > L) + P (|en,P − µ| > L)

+ 3(L‖fu,P ‖∞νn)1/3 + (2νn)1/2.

Proof of Lemma A.2. The integrand on the left of the desired inequal-
ity is equal to

1{
y0−m̂n(x0)≤s<y0−m̂[1]

n (x0)
} + 1{

y0−m̂[1]
n (x0)≤s<y0−m̂n(x0)

}.
Note that the two sets above are disjoint. Thus, using the abbreviations

en,P = mP (x0) − m̂n(x0) and e
[1]
n,P = mP (x0) − m̂[1]

n (x0) together with the
independence of x0 and u0, the conditional expectation of the sum in the
previous display, given the training data and x0, can be bounded as

Pn+1(en,P ≤ s− u0 < e
[1]
n,P ‖Tn, x0) + Pn+1(e

[1]
n,P ≤ s− u0 < en,P ‖Tn, x0)

=

s−(e
[1]
n,P (x0))∧(en,P (x0))∫

s−(e
[1]
n,P (x0))∨(en,P (x0))

fu,P (v) dv ∧ 1 ≤
(
‖fu,P ‖∞|m̂n(x0)− m̂[1]

n (x0)|
)
∧ 1.

Proof of Lemma A.3. For P ∈ P, tn ∈ Zn and s1 > s2, abbreviate
en(P ) = mP (x0)− m̂n(x0) and note

F̃n(s1)− F̃n(s2) = P (s2 < y0 − m̂n(x0) ≤ s1)

= P (s2 − en(P ) < u0 ≤ s1 − en(P ))

= EP

 s1−en(P )∫
s2−en(P )

fu,P (v) dv

 ≤ ‖fu,P ‖∞(s1 − s2),

in view of independence between x0 and u0 imposed by Condition (C1). So
the first claim follows upon reversing the roles of s1 and s2. For the second
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claim, take s and s as in the lemma to obtain

F̃n(s) = P (u0 ≤ s− en(P ))

≥ P (u0 ≤ µ+ c+ qu,P (δ)− en(P ), en(P )− µ ≤ c)
≥ P (u0 ≤ qu,P (δ), en(P )− µ ≤ c)
= P (u0 ≤ qu,P (δ)) · P (en(P )− µ ≤ c)
= δ · (1− P (mP (x0)− m̂n(x0)− µ > c)).

This implies the first bound. The second one is obtained analogously by

F̃n(s) = P (u0 ≤ s− en(P ))

≤ P (u0 ≤ s− en(P ), en(P )− µ ≥ −c) + P (en(P )− µ < −c)
≤ P (u0 ≤ qu,P (δ), en(P )− µ ≥ −c) + P (en(P )− µ < −c)
≤ δ + P (en(P )− µ < −c).

This finishes the proof.

A.2. Proof of Theorem 3.1. We begin by showing that under the
assumptions of Theorem 3.1, both of its conclusions hold with cn = 0 (OLS)
and irrespective of κ ∈ [0, 1). The proof of the following result is deferred to
the end of the subsection.

Lemma A.4. For every n ∈ N, let Pn = Pn(Ll,Lv, C0) be as in Condi-
tion (C2). For P ∈ Pn, define βP to be the minimizer of β 7→ EP [(y0−β′x0)2]
over Rpn. If pn/n→ κ ∈ [0, 1) and

lim sup
n→∞

sup
P∈Pn

EP

[(
mP (x0)− x′0βP

σP

)2
]
< ∞,(A.1)

then the ordinary least squares estimator β̂n = (X ′X)†X ′Y satisfies

lim sup
n→∞

sup
P∈Pn

Pn
(∥∥∥Σ

1/2
P (β̂n − βP )/σP

∥∥∥2

2
> M

)
−−−−→
M→∞

0,

and for every ε > 0,

sup
P∈Pn

Pn
(∥∥∥Σ

1/2
P (β̂n − β̂[1]

n )/σP

∥∥∥2

2
> ε

)
−−−→
n→∞

0.

We proceed with the proof of Theorem 3.1. In order to achieve uniformity
over Pn, we consider an arbitrary sequence Pn ∈ Pn and abbreviate mn =
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mPn , βn = βPn , Σn = ΣPn and σn = σPn and we write En = EPnn , Varn =

VarPnn , etc. We have to show that lim supn→∞ P
n
n (‖Σ1/2

n (β̂n(cn)−βn)/σn‖22 >
M) → 0 as M → ∞, and, provided that κ > 0, that Pnn (‖Σ1/2

n (β̂n(cn) −
β̂

[1]
n (cn))/σn‖22 > ε)→ 0, as n→∞, for every ε > 0.

Define δ2
n = β′nΣnβn/σ

2
n, t2n = β̂′nX

′Xβ̂n/(nσ
2
n) and

sn =


(

1− pn
n
cn
t2n

σ̂2
n
σ2
n

)
+
, if t2n > 0,

1, if t2n = 0,

such that 0 ≤ sn ≤ 1, and β̂n(cn) = snβ̂n, because t2n = 0 if, and only if, β̂n =
0. We abbreviate D := lim supn→∞ supP∈Pn EP [(mP (x0)−β′Px0)2]/σ2

P . The
following properties are useful and will be verified after the main argument
is finished.

Lemma A.5. Under the assumptions of Theorem 3.1 we have: σ̂2
n/σ

2
n and

σ2
n/σ̂

2
n are Pn-uniformly bounded in probability, Pnn (σ̂2

n = 0) = 0 (provided
that n ≥ pn + 2) and Pnn (t2n = 0) → 0. Furthermore, we have Pnn (t2n ≥
κ/2) → 1 if δn → δ ∈ [0,∞). All the statements of the lemma continue to

hold also for the leave-one-out analogs t2n,[1] := β̂
[1]′
n X ′[1]X[1]β̂

[1]
n /(nσ2

n) and

σ̂2
n,[1] = ‖Y[1] −X[1]β̂

[1]
n ‖22/(n− 1− pn) of t2n and σ̂2

n.

The quantity of interest in the first claim of the theorem can be bounded
as∥∥∥Σ1/2

n

(
β̂n(cn)− βn

)
/σn

∥∥∥
2

=
∥∥∥Σ1/2

n sn

(
β̂n − βn

)
/σn + Σ1/2

n (sn − 1)βn/σn

∥∥∥
2

≤
∥∥∥Σ1/2

n

(
β̂n − βn

)
/σn

∥∥∥
2

+ (1− sn)δn.(A.2)

Therefore, by Lemma A.4, it remains to show that lim supn→∞Qn(M)→ 0
as M → ∞, where Qn(M) = Pnn ((1 − sn)δn > M). For fixed M ∈ (1,∞)
and fixed n ∈ N, we distinguish the cases δn < M1/2 and δn ≥ M1/2. In
the former case, Qn(M) = 0. In the latter case, we proceed as follows. First,
notice that

Qn(M) = Pnn
(
(1− sn)δn > M, t2n > 0

)
≤ Pnn

(
pn
n

cn
t2n

σ̂2
n

σ2
n

δn > M, t2n > 0

)
= Pnn

(
pn
n

cn
t2n/δ

2
n

σ̂2
n

σ2
n

> M, t2n > 0

)
.(A.3)
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Furthermore, we trivially have Y = Xβn + σnṽ, where ṽ := (Y −Xβn)/σn
has components ṽi = (mn(xi)−β′nxi)/σn+ (yi−mn(xi))/σn, and, using the
reverse triangle inequality and the notation ‖a‖PX =

√
a′PXa, we have

tn =

√
1

n

Y ′PXY

σ2
n

= ‖Xβn + σnṽ‖PX (nσ2
n)−1/2

≥ |‖Xβn‖PX − ‖σnṽ‖PX | (nσ
2
n)−1/2

=

∣∣∣∣∣∣
√
β′nΣ

1/2
n (X̃ ′X̃/n)Σ

1/2
n βn

σ2
n

−
√
ṽ′PX ṽ

n

∣∣∣∣∣∣ ,
where X̃ := (x̃1, . . . , x̃n)′ := XΣ

−1/2
n and PX := X(X ′X)†X ′. Therefore, on

the event

An(M) = {‖ṽ/
√
n‖22 ≤M1/2, λmin(X̃ ′X̃/n) > c2

0(1−
√
κ)2/2 > M−1/2},

we have ṽ′PX ṽ(nδ2
n)−1 ≤M−1/2 (because δn ≥

√
M) and

β′nΣ1/2
n (X̃ ′X̃/n)Σ1/2

n βn(σ2
nδ

2
n)−1 > c2

0(1−
√
κ)2/2 > M−1/2,

so that on this event tn/δn ≥ c0(1 −
√
κ)/
√

2 −M−1/4 ≥ 0. Thus, turning
back to (A.3) and using Markov’s inequality, we obtain

Pnn

(
pn
n

cn
t2n/δ

2
n

σ̂2
n

σ2
n

> M, t2n > 0

)
≤ Pnn

(
σ̂2
n

σ2
n

> Mt2n/δ
2
n, t

2
n > 0

)
≤ Pnn

(
σ̂2
n

σ2
n

> Mt2n/δ
2
n, An(M)

)
+ Pnn (An(M)c)

≤ Pnn
(
σ̂2
n

σ2
n

> M
(
c0(1−

√
κ)/
√

2−M−1/4
)2
)

+
2D + 1

M1/2

+ Pnn

(
λmin(X̃ ′X̃/n) ≤ c2

0(1−
√
κ)2/2

)
+ Pnn (c2

0(1−
√
κ)2/2 ≤M−1/2),

for sufficiently large n. In view of Lemma B.1(i) in Appendix B and Pn-
boundedness of σ̂2

n/σ
2
n (Lemma A.5), the limit superior of the upper bound

is equal to a function Q(M) ≥ 0 that vanishes as M → ∞. Therefore, we
have shown that lim supn→∞Qn(M) ≤ Q(M)→ 0 as M →∞.

To establish the claim about the stability of β̂n(cn) we proceed in a similar
way. First, note that

‖Σ1/2
n (β̂n(cn)− β̂[1]

n (cn))‖2/σn = ‖(sn − s[1]
n )Σ1/2

n β̂n + s[1]
n Σ1/2

n (β̂n − β̂[1]
n )‖2/σn

≤ |sn − s[1]
n |‖Σ1/2

n β̂n/σn‖2 + |s[1]
n |‖Σ1/2

n (β̂n − β̂[1]
n )/σn‖2

≤ |sn − s[1]
n |‖Σ1/2

n (β̂n − βn)/σn‖2 + |sn − s[1]
n |δn + |s[1]

n |‖Σ1/2
n (β̂n − β̂[1]

n )/σn‖2,
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where s
[1]
n is defined like sn, but using tn,[1] and σ̂2

n,[1]. In view of Lemma A.4,

it is easy to see that it remains to show that |sn− s[1]
n |(1 + δn) = oPn(1). We

argue along subsequences. Let n′ be an arbitrary subsequence of n. Then by
compactness of the extended real line, there exists a further subsequence n′′

of n′, such that δn′′ → δ ∈ [0,∞]. If we can show that for every ε > 0

Pn
′′

n′′ (|sn′′ − s
[1]
n′′ |(1 + δn′′) > ε) −−−−→

n′′→∞
0,

then the claim follows. For simplicity, we write n instead of n′′ and we
distinguish the cases δ =∞ and δ ∈ [0,∞).

If δ = ∞, then it suffices to show that (sn − s[1]
n )δn converges to zero in

Pnn -probability. By Lemma A.5 we have Pnn (t2n = 0)→ 0 and the same holds
for t2n,[1], such that it suffices to show that

Pnn (|sn − s[1]
n |δn > ε, tn > 0, tn,[1] > 0)→ 0.

If tn > 0, set rn = pn
n
cn
t2n

σ̂2
n
σ2
n

, such that sn = (1 − rn)+ on this event, and

define r
[1]
n = pn

n
cn
t2
n,[1]

σ̂2
n,[1]

σ2
n

, provided that tn,[1] > 0. Thus, if both tn and tn,[1]

are positive, we have

|sn − s[1]
n |δn ≤ |rn − r[1]

n |δn ≤

∣∣∣∣∣δ2
n

t2n

σ̂2
n

σ2
n

− δ2
n

t2n,[1]

σ̂2
n,[1]

σ2
n

∣∣∣∣∣ 1

δn
.

But in the first part of the proof we have already established that t2n/δ
2
n is

lower bounded by c2
0(1−

√
κ)2/4 with asymptotic probability one, provided

that δ2
n → ∞ (recall the case δn ≥ M1/2 and the set An(M), and let M =

δ2
n → ∞), and an analogous argument applies to t2n,[1]/δ

2
n. Thus, it follows

from the Pn-boundedness of σ̂2
n/σ

2
n and σ̂2

n,[1]/σ
2
n that the upper bound in

the previous display converges to zero in Pnn -probability.

If δ ∈ [0,∞), it suffices to show that |sn − s[1]
n | converges to zero in Pnn -

probability. As before, we restrict to the event {tn > 0, tn,[1] > 0}. Note
that due to the positive part mapping in the definition of sn, the absolute

difference |sn− s[1]
n | vanishes if both rn and r

[1]
n are greater than or equal to

1, and is otherwise bounded by |rn − r[1]
n | ≤ max(|rn/r[1]

n − 1|, |r[1]
n /rn − 1|),

provided that rn and r
[1]
n are positive. Thus, it remains to verify that r

[1]
n /rn

converges to 1 in Pnn -probability and that both Pnn (rn = 0) and Pnn (r
[1]
n = 0)

converge to zero. The latter statement follows from Lemma A.5, in fact it
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shows that Pnn (rn = 0) = 0 = Pnn (r
[1]
n = 0) provided that n ≥ pn + 2.

Finally, to show that r
[1]
n /rn → 1 in Pnn -probability, define S[1] := X̃ ′[1]X̃[1] =∑n

i=2 x̃ix̃
′
i and note that by the Sherman-Morrison formula (see also the

proof of Lemma A.4 below) we have

β̂′nX
′Xβ̂n = β̂[1]′

n X ′[1]X[1]β̂
[1]
n + (x′1β̂

[1]
n )2 + 2x′1β̂

[1]
n (y1 − x′1β̂[1]

n )

+ (y1 − x′1β̂[1]
n )2

x̃′1S
−1
[1] x̃1

1 + x̃′1S
−1
[1] x̃1

≤ β̂[1]′
n X ′[1]X[1]β̂

[1]
n + y2

1,

at least on the event Bn := {λmin(S[1]) > 0}, which has asymptotic Pnn -
probability one by Lemma B.1. Thus, on Bn, t2n/t

2
n,[1] = 1 + gn, where

|gn| ≤
y2

1

β̂
[1]′
n X ′[1]X[1]β̂

[1]
n

.(A.4)

By Lemma A.5, and since κ > 0, β̂
[1]′
n X ′[1]X[1]β̂

[1]
n /(nσ2

n) = t2n,[1] is bounded
away from zero with asymptotic probability one. Thus, for the desired con-
vergence of t2n/t

2
n,[1] to 1, it remains to show that the numerator in (A.4)

divided by nσ2
n converges to zero in Pnn -probability. But this now follows

from Condition (C2), assumption (3.5) and the fact that δ <∞. The proof
is finished if we can also show that σ̂2

n/σ̂
2
n,[1] converges to 1, in Pnn -probability.

To this end, we apply the Sherman-Morrison formula once more to get

In − PX = In − PX̃ =


1

1+x̃′1S
−1
[1]
x̃1
, −

x̃′1S
−1
[1]
X̃′

[1]

1+x̃′1S
−1
[1]
x̃1

−
X̃[1]S

−1
[1]
x̃1

1+x̃′1S
−1
[1]
x̃1
, In−1 − PX̃[1]

+
X̃[1]S

−1
[1]
x̃1x̃′1S

−1
[1]
X̃′

[1]

1+x̃′1S
−1
[1]
x̃1

 ,

on the event Bn. Thus, on this event,

σ̂2
n(n− pn) = Y ′(In − PX)Y = Y ′[1](In−1 − PX[1]

)Y[1]

+
(y1 − x′1β̂

[1]
n )2

1 + x̃′1S
−1
[1] x̃1

,

such that σ̂2
n

σ̂2
n,[1]

n−pn
n−1−pn =: 1 + hn, where

|hn| ≤
(y1 − x′1β̂

[1]
n )2

(n− 1− pn)σ2
n

σ2
n

σ̂2
n,[1]

.
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But it is easy to see that the upper bound converges to zero in Pnn -probability
by Condition (C2), assumption (3.5), Lemmas A.4 and A.5, and because
n− pn →∞ and δ <∞.

Proof of Lemma A.5. We use the notation ei :=
m(xi)−x′iβn

σn
, vi :=

yi−m(xi)
σn

, v̌ := e + v, where e = (e1, . . . , en)′ and v = (v1, . . . , vn)′, such
that Y = Xβn + σnv̌ = Xβn + σne+ σnv. For the first claim simply observe
that

σ̂2
n

σ2
n

=
Y ′(In − PX)Y

(n− pn)σ2
n

=
n

n− pn
v̌′(In − PX)v̌

n
≤ n

n− pn

∥∥∥∥ v̌√
n

∥∥∥∥2

2

,

and that En‖v̌‖22 = nEn[v̌2
1] ≤ n(2D+ 1), for sufficiently large n. For bound-

edness of the reciprocal we first note that Pnn (σ̂2
n = 0) = En[Pnn (Y ′(In −

PX)Y = 0‖X)] = Pnn (In − PX = 0) = 0, because the conditional dis-
tribution of Y given X under Pnn is absolutely continuous with respect
to Lebesgue measure and n ≥ pn + 2. Similarly, Pnn (tn = 0) = Pnn (β̂n =
0) = En[Pnn ((X ′X)†X ′Y = 0‖X)] = Pnn (X(X ′X)† = 0) = Pnn (X = 0) =
(Lw({0}))npn → 0. Next we show that σ̂2

n/σ
2
n is bounded from below by

(1− κ)/2 with asymptotic probability one. To this end, note that

σ̂2
n

σ2
n

=
Y ′(In − PX)Y

(n− pn)σ2
n

≥ 2
e′(In − PX)v

n
+

∥∥∥∥(In − PX)v√
n

∥∥∥∥2

2

,

where the conditional expectation of the mixed term given X is equal to zero
and its conditional variance converges to zero in Pnn -probability because of
En[e2

i ] ≤ 2D, for sufficiently large n. The conditional expectation of the last
term in the previous display is trace(In − PX)/n = trace(In − PX̃)/n =
1 − pn/n, with asymptotic probability one in view of Lemma B.1(i). Using
independence of the vi and a little algebra, its conditional variance can be
computed as

Varn

[
v′(In − PX)v

n

∥∥∥X] =
2 trace((In − PX)2)

n2
+

(En[v4
1]− 3)

n2

n∑
i=1

(In − PX)2
ii

≤ 2
n

n2
+

(C0 + 3)n

n2
→ 0.(A.5)

This establishes the boundedness of σ2
n/σ̂

2
n. For the remaining statement

about t2n, suppose that δ2
n → δ ∈ [0,∞) and note that

t2n =
Y ′PXY

nσ2
n

=

∥∥∥∥∥X̃Σ
1/2
n βn√
nσ2

n

+
PXe√
n

+
PXv√
n

∥∥∥∥∥
2

2

.
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Abbreviate Wn := X̃Σ
1/2
n βn√
nσ2

n

+ PXe√
n

and observe t2n ≥ 2W ′nPXv/
√
n +

‖PXv/
√
n‖22. The conditional expectation of the mixed term W ′nPXv/

√
n

given X is equal to zero, and its conditional variance is bounded by
‖Wn/

√
n‖22. But ‖Wn‖22 is bounded in Pnn -probability, in view of the facts

that δ < ∞, En[X̃ ′X̃/n] = In and En[e2
i ] ≤ 2D, for sufficiently large n.

Thus, the mixed term is oPnn (1). For ‖PXv/
√
n‖22 one easily verifies that

its conditional expectation given X is trace(PX)/n = trace(PX̃)/n, which

converges to κ ∈ [0, 1) in Pnn -probability, because Pnn (λmin(X̃ ′X̃) = 0) → 0
by Lemma B.1. Furthermore, as above, its conditional variance can easily
be computed as

Varn

[
v′PXv

n

∥∥∥X] =
2 trace(P 2

X)

n2
+

(En[v4
1]− 3)

n2

n∑
i=1

(PX)2
ii

≤ 2pn
n2

+
(C0 + 3)pn

n2
→ 0.

Thus, ‖PXv/
√
n‖22 converges to κ, in Pnn -probability, which establishes the

asymptotic lower bound on t2n. The results about the leave-one-out quantities
can be established analogously.

Proof of Lemma A.4. Fix n ∈ N and P ∈ Pn. For simplicity, we write
m = mP , Σ = ΣP , β = βP and σ2 = σ2

P and abbreviate X̃ := XΣ−1/2.
For ξ > 0, consider the event An := An(ξ) := {λmin(X̃ ′X̃/n) > ξ}.
On this event, we observe that Σ1/2(β̂n − β)/σ = (X̃ ′X̃)−1X̃ ′v̌, where
v̌ = (v̌1, . . . , v̌n)′, v̌i = (m(xi) − β′xi)/σ + vi and vi = (yi − m(xi))/σ,
for i = 1, . . . , n. Thus, on An, ‖Σ1/2(β̂n − β)/σ‖22 = v̌′X̃(X̃ ′X̃)−2X̃ ′v̌ =
v̌′X̃(X̃ ′X̃)−1/2(X̃ ′X̃)−1(X̃ ′X̃)−1/2X̃ ′v̌ ≤ ‖v̌/

√
n‖22‖(X̃ ′X̃/n)−1‖2. Hence,

using Condition (C2), we obtain

Pn(‖Σ1/2(β̂n − β)/σ‖22 > M)

≤ Pn(‖v̌/
√
n‖22‖(X̃ ′X̃/n)−1‖2 > M,An(ξ)) + Pn(An(ξ)c)

≤ Pn(‖v̌/
√
n‖22/ξ > M) + Pn(An(ξ)c)

≤ EP [v̌2
1]

Mξ
+ Pn(λmin(X̃ ′X̃/n) ≤ ξ).

Since EP [v̌2
1] = EP [(m(x0) − β′x0)2/σ2] + 1, in view of (C2), and because

Pn(λmin(X̃ ′X̃/n) ≤ ξ) does not depend on the parameters β, Σ and σ2,
Lemma B.1(ii) implies the first claim if we set ξ = c2

0(1−
√
κ)2/2 > 0.

For the stability property, we abbreviate S[1] = X̃ ′[1]X̃[1], β̃n := Σ1/2(β̂n−
β)/σ and β̃

[1]
n = Σ1/2(β̂

[1]
n −β)/σ, and consider the event Bn = {λmin(S[1]) >
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0}. On this event, also λmin(X̃ ′X̃) = λmin(S[1] + x̃1x̃
′
1) > 0, where X̃ =

[x̃1, . . . , x̃n]′ and X̃[1] = [x̃2, . . . , x̃n]′, and the Sherman-Morrison formula
yields

β̃n = (X̃ ′X̃)−1X̃ ′v̌ = (S[1] + x̃1x̃
′
1)−1(X̃ ′[1]v̌[1] + x̃1v̌1)

=

(
S−1

[1] −
S−1

[1] x̃1x̃
′
1S
−1
[1]

1 + x̃′1S
−1
[1] x̃1

)
(X̃ ′[1]v̌[1] + x̃1v̌1)

= β̃[1]
n −

S−1
[1] x̃1x̃

′
1β̃

[1]
n

1 + x̃′1S
−1
[1] x̃1

+ S−1
[1] x̃1v̌1 − S−1

[1] x̃1v̌1

x̃′1S
−1
[1] x̃1

1 + x̃′1S
−1
[1] x̃1

= β̃[1]
n +

S−1
[1] x̃1(v̌1 − x̃′1β̃

[1]
n )

1 + x̃′1S
−1
[1] x̃1

,

and thus, ‖Σ1/2(β̂n − β̂[1]
n )/σ‖22 = (1 + x̃′1S

−1
[1] x̃1)−2x̃′1S

−2
[1] x̃1(v̌1 − x̃′1β̃

[1]
n )2 ≤

2(v̌2
1 +(x̃′1β̃

[1]
n )2)x̃′1S

−2
[1] x̃1. Clearly, the squared error term v̌2

1 is Pn-uniformly

bounded in probability because EP [v̌2
1] = EP [(m(x0) − β′x0)2/σ2] + 1, as

above; E[(x̃′1β̃
[1]
n )2‖β̃[1]

n ] = ‖β̃[1]
n ‖22 is also Pn-uniformly bounded in proba-

bility, by the same argument as in the first paragraph, which implies that

(x̃′1β̃
[1]
n )2 is Pn-uniformly bounded in probability; and E[x̃′1S

†2
[1]x̃1‖S[1]] =

traceS†2[1] → 0, Pn-uniformly in probability, by Lemma B.1. Therefore, we

have Pn(‖Σ1/2(β̂n − β̂[1]
n )/σ‖22 > ε,Bn) ≤ Pn(2OPn(1)oPn(1) > ε,Bn) → 0.

Moreover, Pn(Bc
n) = Pn−1(λmin(S[1]) = 0)→ 0, uniformly over Pn, in view

of Lemma B.1.

A.3. Proof of Theorem 3.4. We begin by stating a few more results
on the OLS estimator that hold in the linear model (C3). The proof is
deferred to the end of the subsection.

Lemma A.6. Under the assumptions of Theorem 3.4, the OLS estimator
β̂n = (X ′X)†X ′Y , satisfies

sup
P∈Pn

Pn
(∣∣∣∥∥∥Σ

1/2
P (β̂n − βP )/σP

∥∥∥
2
− τ
∣∣∣ > ε

)
−−−→
n→∞

0, and

sup
P∈Pn

Pn
(∥∥∥Σ

1/2
P (β̂n − βP )/σP

∥∥∥
4
> ε
)
−−−→
n→∞

0,

for every ε > 0. Here, τ = τ(Ll, κ) ∈ [0,∞) depends only on Ll and κ ∈ [0, 1)
and has the following properties: For any Ll as in (C3), τ(Ll, κ) = 0 if, and
only if, κ = 0. If Ll({−1, 1}) = 1, then τ(Ll, κ) =

√
κ/(1− κ).
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The next result will be instrumental to establish convergence of the con-
ditional law P (y0−x′0β̂n ≤ t‖Tn) to the distribution of lNτ +v, for l, N, τ, v
as in the statement of the theorem. Its proof is also deferred until after the
main argument is finished.

Lemma A.7. Fix arbitrary positive constants τ ∈ [0,∞), δ ∈ (0, 2] and
c ∈ (0,∞) and let (pn)n∈N be a sequence of positive integers. On some
probability space (Ω,A,P), let v0 and l0 be real random variables and let
W0 = (w0j)

∞
j=1 be a sequence of i.i.d. real random variables such that W0,

v0 and l0 are jointly independent, |l0| ≥ c, E[l20] = 1, E[w01] = 0, E[w2
01] = 1

and E[|w01|2+δ] <∞. For n ∈ N and b ∈ Rpn, define wn = (w01, . . . , w0pn)′,

G(t, b) = P(l0w
′
nb+v0 ≤ t) and F (t) = P(l0Nτ+v0 ≤ t), where N

L
= N (0, 1)

is independent of (l0, v0). Consider positive sequences g1, g2 : N → (0, 1),
such that gj(n)→ 0, as n→∞, j = 1, 2. Suppose that one of the following
cases applies.

(i) τ = 0 and t 7→ P(v0 ≤ t) is continuous. In this case, set

Bn = {b ∈ Rpn : ‖b‖2 ≤ g1(n)}.

(ii) τ > 0 and pn →∞ as n→∞. In this case, set

Bn = {b ∈ Rpn : |‖b‖2 − τ | ≤ g1(n), b 6= 0, ‖b‖2+δ/‖b‖2 ≤ g2(n)}.

(iii) τ > 0 and w01
L
= N (0, 1). In this case, set

Bn = {b ∈ Rpn : |‖b‖2 − τ | ≤ g1(n)}.

Then, using the convention that sup∅ = 0,

sup
b∈Bn

sup
t∈R
|G(t, b)− F (t)| −−−→

n→∞
0.(A.6)

We now turn to the proof of Theorem 3.4. In order to achieve uniformity
in Pn ∈ P linn , we consider sequences of parameters βn ∈ Rpn , σ2

n ∈ (0,∞) and
Σn ∈ Spn (where Spn is the set of all symmetric, positive definite pn × pn
matrices). All the operators E, Var and Cov are to be understood with
respect to Pnn .

We have to show that, for arbitrary but fixed α ∈ [0, 1], q̂α/σn converges
in Pnn -probability to qα, the α quantile of the distribution of lNτ + v, the
cdf of which we denote by F . In either case of Theorem 3.4, it is easy to
see that the quantile qα is unique. Note further that for α ∈ (0, 1], q̂α =
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F̂ †n(α) := inf{t ∈ R : F̂n(t) ≥ α}. We treat the case α ∈ {0, 1} separately
at the end of the proof, because q1 = −q0 =∞. To deal with the empirical
quantiles we use a standard argument. For α ∈ (0, 1) and ε > 0, consider

Pnn (|q̂α/σn − qα| > ε) = Pnn (q̂α/σn > qα + ε) + Pnn (q̂α/σn < qα − ε).

To bound the first probability on the right, abbreviate Ji := 1{ûi/σn>qα+ε}
and note that by definition of the OLS predictor, the leave-one-out residuals
ûi = yi−x′i(X ′[i]X[i])

†X ′[i]Y[i], i = 1, . . . , n, and thus also the Ji, i = 1, . . . , n,

are exchangeable under Pnn . A basic property of the quantile function F̂ †n
(cf. van der Vaart, 2007, Lemma 21.1) yields

Pnn (q̂α/σn > qα + ε) = Pnn

(
α > F̂n(σn(qα + ε))

)
= Pnn

(
1− F̂n(σn(qα + ε)) > 1− α

)
= Pnn

(
1

n

n∑
i=1

(Ji − E[J1]) > 1− α− E[J1]

)

= Pnn

(
1

n

n∑
i=1

(Ji − E[Ji]) > Fn(qα + ε)− α

)
,

where Fn(t) := Pnn (û1/σn ≤ t) is the marginal cdf of the scaled leave-one-out
residuals. If we can show that

Fn(t)→ F (t), ∀t ∈ R,(A.7)

as n→∞, then Fn(qα+ε)→ F (qα+ε) > α, because qα is unique, and thus
the probability in the second to last display can be bounded, at least for n
sufficiently large, using Markov’s inequality, by

(Fn(qα + ε)− α)−2E

∣∣∣∣∣ 1n
n∑
i=1

(Ji − E[Ji])

∣∣∣∣∣
2


= (Fn(qα + ε)− α)−2

(
1

n
Var[J1] +

n(n− 1)

n2
Cov(J1, J2)

)
,

where the equality holds in view of the exchangeability of the Ji. An analo-
gous argument yields a similar upper bound for the probability Pnn (q̂α/σn ≤
qα − ε) but with (Fn(qα + ε) − α)−2 replaced by (α − Fn(qα − ε))−2, and
Ji replaced by Ki = 1{ûi/σn≤qα−ε}. The proof will thus be finished if we
can establish (A.7) and show that Cov(J1, J2) and Cov(K1,K2) converge to
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zero as n→∞. We only consider Cov(J1, J2) = Cov(1− J1, 1− J2), as the
argument for Cov(K1,K2) is analogous. Write δ = qα + ε and

Cov(1−J1, 1−J2) = Pnn (û1/σn ≤ δ, û2/σn ≤ δ)−Pnn (û1/σn ≤ δ)Pnn (û2/σn ≤ δ).

Now, (
û1/σn
û2/σn

)
=

(
û1[2[/σn
û2[1]/σn

)
+

(
ê1

ê2

)
,

where ûi[j] = yi − x′iβ̂
[ij]
n , β̂

[ij]
n = (X ′[ij]X[ij])

†X ′[ij]Y[ij], and êi = (ûi −
ûi[j])/σn = x′i(β̂

[ij]
n − β̂[i]

n )/σn, for {i, j} = {1, 2}. Therefore, E[êi‖Y[i], X[i]] =

0, because E[xi] = 0, and E[ê2
i ‖Y[i], X[i]] = ‖Σ1/2(β̂

[i]
n − β̂[ij]

n )/σn‖22, which
converges to zero in Pnn -probability, by Lemma A.4 (for a sample of size
n− 1 instead of n), which applies here because (C2) is satisfied under (C3).
Hence, ê1 and ê2 converge to zero in probability. The joint distribution func-
tion of û1[2]/σn and û2[1]/σn can be written as

Pnn (û1[2]/σn ≤ s, û2[1]/σn ≤ t)
(A.8)

= E
[
Pnn

(
x′1(βn − β̂[12]

n )/σn + v1 ≤ s, x′2(βn − β̂[12]
n )/σn + v2 ≤ t

∥∥∥Y[12], X[12]

)]
= E

[
Gn

(
s,Σ1/2(βn − β̂[12]

n )/σn

)
Gn

(
t,Σ1/2(βn − β̂[12]

n )/σn

)]
,

where, for t ∈ R and b ∈ Rpn , Gn is defined as Gn(t, b) = Pn(b′Σ−1/2x0+v0 ≤
t). Note that Gn depends only on Ll, Lw, Lv and on n, through pn. If we

abbreviate β̃
[12]
n = Σ1/2(βn − β̂

[12]
n )/σn and β̃

[1]
n = Σ1/2(βn − β̂

[1]
n )/σn, we

arrive at

Cov(1− J1, 1− J2) = E
[
Gn

(
δ, β̃[12]

n

)2
]
− E

[
Gn

(
δ, β̃[1]

n

)]2
+ o(1),

provided the bivariate distribution function in (A.8) converges pointwise
to a continuous limit. We finish the proof by showing that for all t ∈ R,

the bounded random variables Gn(t, β̃
[12]
n ) and Gn(t, β̃

[1]
n ) both converge to

F (t), in Pnn -probability, and hence, (A.8) converges to F (s)F (t), which is

continuous. Note that this also implies (A.7), because Fn(t) = E[Gn(t, β̃
[1]
n )].

To this end, we note that for an arbitrary measureable set Bn ⊆ Rpn and
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for any ε > 0,

Pnn

(
sup
t∈R

∣∣∣Gn(t, β̃[1]
n )− F (t)

∣∣∣ > ε

)
≤ Pnn

(
sup
t∈R

∣∣∣Gn(t, β̃[1]
n )− F (t)

∣∣∣ > ε, β̃[1]
n ∈ Bn

)
+ Pnn

(
β̃[1]
n /∈ Bn

)
≤ an(ε) + Pnn

(
β̃[1]
n /∈ Bn

)
,

where an(ε) = 1 if supb∈Bn supt∈R |Gn(t, b)− F (t)| > ε, and an(ε) = 0, else.
Now, we first consider the case κ = 0. Thus, Lemma A.6, which also applies

to β̂
[1]
n , yields ‖β̃[1]

n ‖2 → τ = 0, as n → ∞, in Pnn -probability. Therefore,
the probability in the last line of the previous display converges to zero if
we take Bn = {b ∈ Rpn : ‖b‖2 ≤ g1(n)} and g1(n) → 0 sufficiently slowly,
as n → ∞. Hence, Lemma A.7(i) applies and shows that also an(ε) → 0

as n → ∞, for every ε > 0. If κ > 0, Lemma A.6 yields ‖β̃[1]
n ‖2 → τ > 0

and ‖β̃[1]
n ‖4 → 0, in Pnn -probability, as n → ∞. Thus, the probability in

the last line of the previous display converges to zero if we take Bn = {b ∈
Rpn : b 6= 0, |‖b‖2 − τ | ≤ g1(n), ‖b‖4/‖b‖2 ≤ g2(n)} and sequences g1 and
g2 that converge to zero sufficiently slowly. Now Lemma A.7(ii) shows that
also an(ε) → 0 as n → ∞, for every ε > 0. The same argument applies to

β̃
[12]
n instead of β̃

[1]
n , which finishes the proof in the case α ∈ (0, 1).

Next, we treat the case α = 0. In either case of the theorem, we have
limγ→0 qγ = q0 = −∞. By definition, q̂0 ≤ q̂γ , for any γ ∈ (0, 1). Thus, for
any M > 0, there exists a γ ∈ (0, 1), such that qγ < −2M and Pnn (q̂0/σPn <
−M) ≥ Pnn (q̂γ/σPn < −M) → 1, as n → ∞, in view of the first part.
In other words, q̂0/σPn converges to −∞ = q0 in Pnn -probability. A similar
argument can be used to treat the case α = 1.

Proof of Lemma A.6. On the event {λmin(X̃ ′X̃) > 0}, which has
asymptotic probability one in view of Lemma B.1(ii), notice the identity

Σ
1/2
P (β̂n − βP )/σP = (X̃ ′X̃)†X̃ ′v,

where v = (v1, . . . , vn)′ = (Y − XβP )/σP . Thus, the distribution under
P ∈ Pn of the quantity of interest does not depend on the parameters βP ,
σ2
P and ΣP . Hence, without loss of generality, we assume for the rest of this

proof that βP = 0, σ2
P = 1 and ΣP = Ipn . First, we have to show that

‖β̂n‖2 → τ ∈ [0,∞), in probability, for a τ = τ(Ll, κ) with the properties
mentioned in the lemma. To this end, consider the conditional mean

E
[
‖β̂n‖22

∥∥∥X] = trace(X ′X)†X ′X(X ′X)† = trace(X ′X)†
a.s.−−→ τ2,
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by Lemma B.1(iv) and for τ as desired (cf. Remark B.2). From the same
lemma we get convergence of the conditional variance

Var
[
‖β̂n‖22

∥∥∥X] = Var
[
v′X(X ′X)†2X ′v

∥∥∥X] =: Var[v′Kv‖X]

= 2 traceK2 + (E[v4
1]− 3)

n∑
i=1

K2
ii

≤ 2 traceK2 + (E[v4
1] + 3)

n∑
i,j=1

K2
ij = (E[v4

1] + 5) traceK2

= (E[v4
1] + 5) traceX(X ′X)†2X ′X(X ′X)†2X ′

= (E[v4
1] + 5) trace(X ′X)†2

a.s.−−→ 0.

For the second claim it suffices to show that ‖β̂n‖44 → 0, in probability.
Notice that for M := (m1, . . . ,mpn)′ := (X ′X)†X ′, we have

‖β̂n‖44 = ‖Mv‖44 =

pn∑
j=1

(m′jv)4 =

pn∑
j=1

n∑
i1,i2,i3,i4=1

mji1mji2mji3mji4vi1vi2vi3vi4 .

After taking conditional expectation given X, only terms with paired indices
remain and we get

E
[
‖β̂n‖44

∥∥∥X] =

pn∑
j=1

E[v4
1]

n∑
i=1

m4
ji + 3

n∑
i 6=k

m2
jim

2
jk


≤

pn∑
j=1

E[v4
1]

n∑
i,k=1

m2
jim

2
jk + 3

n∑
i,k=1

m2
jim

2
jk


= (E[v4

1] + 3)

pn∑
j=1

(m′jmj)
2 ≤ (E[v4

1] + 3) trace

pn∑
i,j=1

mim
′
imjm

′
j

= (E[v4
1] + 3) trace(M ′M)2 = (E[v4

1] + 3) trace(X ′X)†2
a.s.−−→ 0,

by Lemma B.1(iii).

Proof of Lemma A.7. First, in the case (i), for every n ∈ N, take bn ∈
Bn = {b ∈ Rpn : ‖b‖2 ≤ g1(n)} and simply note that l0b

′
nwn → 0, in

probability, and thus G(t, bn)→ F (t) weakly. Since the limit is continuous,
Polya’s theorem yields uniform convergence in t ∈ R. Since the sequence
bn ∈ Bn was arbitrary, we also get uniform convergence over Bn.
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Next, we consider the Gaussian case (iii), so Bn = {b ∈ Rp : |‖b‖2 − τ | ≤
g1(n)}. For every n ∈ N, let bn ∈ Bn be arbitrary, and note that t 7→
G(t, bn) is the distribution function of l0b

′
nwn+v0, where wn

L
= N (0, Ipn), and

l0, wn, v0 are independent. Clearly, l0b
′
nwn+v0

L
= l0N‖bn‖2+v0 → l0Nτ+v0,

weakly, and this limit has continuous distribution function F . Hence, by
Polya’s theorem, supt |P(l0b

′
nwn+ v0 ≤ t)−F (t)| → 0, as n→∞. And since

the sequence bn ∈ Bn was arbitrary, the result follows.

In the general case (ii) first note that Bn may be empty. By our convention
that sup∅ = 0 it suffices to restrict to the subsequence n′ for which Bn′ 6= ∅.
If this is only a finite sequence, then the result is trivial. For convenience, we
write n = n′. So let bn ∈ Bn and define the triangular array znj := bnjw0j ,
j = 1, . . . , pn, which satisfies E[znj ] = 0 and s2

n :=
∑p

j=1 E[z2
nj ] = ‖bn‖22 6= 0.

The Lyapounov condition is verified by

pn∑
j=1

s−(2+δ)
n E[|znj |2+δ] = E

[
|w01|2+δ

](‖bn‖2+δ

‖bn‖2

)2+δ

≤ E
[
|w01|2+δ

]
[g2(n)]2+δ −−−→

n→∞
0.

Therefore, by Lyapounov’s CLT (Billingsley, 1995, Theorem 27.3), we have

b′nwn/‖bn‖2 =

pn∑
j=1

znj/sn
w−−−→

n→∞
N (0, 1).

Since bn ∈ Bn, we must have ‖bn‖2 → τ as n → ∞, and thus, b′nwn =

‖bn‖2b′nwn/‖bn‖2
w−→ Nτ , where N

L
= N (0, 1), as n → ∞, and, by indepen-

dence, l0b
′
nwn+v0

w−→ l0Nτ +v0. Since the distribution function of this limit
is continuous, Polya’s theorem yields supt |G(t, bn)− F (t)| → 0, as n→∞.
Now the proof is finished because this convergence holds for arbitrary se-
quences bn ∈ Bn.

APPENDIX B: AUXILIARY RESULTS

Lemma B.1. On a common probability space (Ω,F ,P), consider an i.i.d.
sequence L0 = {li : i = 1, 2, . . . } of random variables satisfying |l1| ≥ c > 0,
and a double infinite array W0 = {wij : i, j = 1, 2, . . . } of i.i.d. random
variables with mean zero, unit variance and E[w4

11] < ∞, such that L0 and
W0 are independent. For a sequence of positive integers (pn) with pn ≤ n,
consider the n× pn random matrix X̃ = ΛW , where Λ = diag(l1, . . . , ln) is
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diagonal and W = {wij : i = 1, . . . , n; j = 1, . . . , pn}. Let (X̃ ′X̃)† denote
the Moore-Penrose pseudo inverse of X̃ ′X̃. If pn/n → κ ∈ [0, 1) then the
following holds:

(i) lim infn→∞ λmin(X̃ ′X̃/n) ≥ c2(1−
√
κ)2, almost surely.

(ii) limn→∞ P(λmin(X̃ ′X̃/n) ≤ ε) = 0 for all ε < c2(1−
√
κ)2.

(iii) If m > 1, then trace (X̃ ′X̃)†m → 0, almost surely, as n→∞.
(iv) trace (X̃ ′X̃)† → τ2 almost surely, as n → ∞, for some constant τ ∈

[0,∞) that depends only on κ and on the distribution of l21 and satisfies
τ = 0 if, and only if, κ = 0.

Proof. Let λ
(n)
1 ≤ · · · ≤ λ

(n)
pn and µ

(n)
1 ≤ · · · ≤ µ

(n)
pn denote the ordered

eigenvalues of X̃ ′X̃/n and W ′W/n, respectively. Then,

λ
(n)
1 = inf

‖t‖=1
t′W ′Λ2Wt/n ≥

(
min

i=1,...,n
l2i

)
inf
‖t‖=1

t′W ′Wt/n ≥ c2µ
(n)
1 ,

and from the Bai-Yin Theorem (Bai and Yin, 1993) it follows that µ
(n)
1 →

(1 −
√
κ)2 > 0, almost surely, as pn/n → κ ∈ [0, 1) (cf. Huber and Leeb,

2013, for the case κ = 0). This finishes the proof of part (i). Part (ii) is now

a textbook argument: Simply note that for k ≤ n, we have P(λ
(n)
1 ≤ ε) ≤

P(infr≥k λ
(r)
1 ≤ ε) and that infr≥k λ

(r)
1 ≤ infr≥k+1 λ

(r)
1 for all k ∈ N. Thus

lim sup
n→∞

P(λ
(n)
1 ≤ ε) = inf

k∈N
sup
n≥k

P(λ
(n)
1 ≤ ε)

≤ inf
k∈N

P
(

inf
r≥k

λ
(r)
1 ≤ ε

)
= lim

k→∞
P
(

inf
r≥k

λ
(r)
1 ≤ ε

)
= P

(
∀k ∈ N : inf

r≥k
λ

(r)
1 ≤ ε

)
= P

(
lim inf
n→∞

λ
(n)
1 ≤ ε

)
= 0.

Next, abbreviate λj = λ
(n)
j , µj = µ

(n)
j , for m ≥ 1 set αm := c2m(1−

√
κ)2m

and, for α > 0, define the functions h0 and hα by h0(y) = 1/|y| if y 6= 0 and
h0(0) = 0, and by hα(y) = 1/|y|, if |y| > α/2 and hα(y) = 2/α, if |y| ≤ α/2.
With this notation, and from the previous considerations, we see that the
difference between

trace (X̃ ′X̃)†m = n−m trace (X̃ ′X̃/n)†m =
pn
nm

1

pn

pn∑
j=1

h0(λmj ),

and
pn
nm

1

pn

pn∑
j=1

hαm(λmj )
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converges to zero, almost surely, because λmj ≥ λm1 ≥ c2mµm1 →
αm > αm/2 > 0, almost surely. But we have n−m

∑pn
j=1 hαm(λmj ) ≤

(pn/n
m)(2/αm) → 0, if m > 1, or if m = 1 and κ = 0. This finishes

(iii) and the case κ = 0 of part (iv).

For the remainder of part (iv), let m = 1 and κ > 0, and first note that
the empirical spectral distribution function FΛ2

n of Λ2 is simply given by the
empirical distribution function of l21, . . . , l

2
n, and this converges weakly (even

uniformly) to the distribution function of l21, almost surely. Hence, from
Theorem 4.3 in Bai and Silverstein (2010), it follows that, almost surely,

the empirical spectral distribution function F
X̃′X̃/n
n of X̃ ′X̃/n converges

vaguely, as pn/n → κ ∈ (0, 1), to a non-random distribution function F
that depends only on κ and on the distribution of l21. From the argument in
the previous paragraph we know that λ1 ≥ c2µ1 → c2(1 −

√
κ)2 = α1 > 0,

almost surely, and thus the support of F must be lower bounded by α1.
Since hα1 is continuous and vanishes at infinity, by vague convergence, we
have (cf. Billingsley, 1995, relation (28.2))

1

pn

pn∑
j=1

hα1(λj) =

∞∫
−∞

hα1(y)dF X̃
′X̃/n

n (y)

a.s.−−→
∞∫
−∞

hα1(y)dF (y) =

∞∫
−∞

1

y
dF (y) =: τ2

0 ∈ (0, 1/α1).

Thus
pn
n

1

pn

pn∑
j=1

hα1(λj)
a.s.−−→ κτ2

0 =: τ2 > 0.

Remark B.2. If the li in Lemma B.1 satisfy |li| = 1, almost surely,
then τ in part (iv) is given by τ(κ) =

√
κ/(1− κ) (cf. Huber and Leeb,

2013, Lemma B.2).

Lemma B.3. Suppose that for every n ∈ N, the class Pn =

P(lin)
n (Ll,Lw,Lv) is as in Condition (C3) and Ll has a finite fourth mo-

ment. Furthermore, let pn/n → κ > 0 and n > pn for all n ∈ N. Then, for
every c ∈ [0, 1], every η ∈ (0,∞] and every ε ∈ (0, 1), the James-Stein-type
estimator β̂n(c) satisfies

sup
P∈Pn

Pn
(∥∥∥Σ

1/2
P

(
β̂n(c)− βP

)
/σP

∥∥∥
2+η
≥ εc
√
κ/2

)
−−−→
n→∞

1.
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Proof. Consider a sequence Pn ∈ Pn, such that βPn =

σPnΣ
−1/2
Pn

(
√
κ, 0, . . . , 0)′, so that b := Σ

1/2
Pn
βPn/σPn = (

√
κ, 0, . . . , 0)′ ∈ Rpn

and ‖b‖2 = ‖b‖q =
√
κ, for every q ∈ (0,∞]. Simple relations of `q-norms

yield∥∥∥Σ
1/2
Pn

(
β̂n(c)− βPn

)
/σPn

∥∥∥
2+η
≥
∥∥∥Σ

1/2
Pn

(
β̂n(c)− βPn

)
/σPn

∥∥∥
(2+η)∨4

=
∥∥∥snΣ

1/2
Pn

(β̂n − βPn)/σPn − (1− sn)b
∥∥∥

(2+η)∨4

≥
∣∣∣∣|sn| ∥∥∥Σ

1/2
Pn

(β̂n − βPn)/σPn

∥∥∥
(2+η)∨4

− |sn − 1|
√
κ

∣∣∣∣
≥ |sn − 1|

√
κ− |sn|

∥∥∥Σ
1/2
Pn

(β̂n − βPn)/σPn

∥∥∥
(2+η)∨4

,

where sn is defined as before, i.e.,

sn =


(

1− pn
n

c
t2n

σ̂2
n
σ2
n

)
+
, if t2n > 0,

1, else,

and t2n = β̂′nX
′Xβ̂n/(nσ

2
n), so that β̂n(c) = snβ̂n. Clearly, we have |sn| ≤ 1

and
∥∥∥Σ

1/2
Pn

(β̂n − βPn)/σPn

∥∥∥
(2+η)∨4

≤
∥∥∥Σ

1/2
Pn

(β̂n − βPn)/σPn

∥∥∥
4
→ 0, in Pnn -

probability, by Lemma A.6. Therefore, we see that

Pnn
(
|sn − 1|

√
κ− oPnn (1) ≥ εc

√
κ/2
)

(B.1)

≤ Pnn
(∥∥∥Σ

1/2
Pn

(
β̂n(c)− βPn

)
/σPn

∥∥∥
2+η
≥ εc
√
κ/2

)
.

Now, as in the proof of Lemma A.5 but with e = 0 (now the linear model is
assumed correct),

t2n =

∥∥∥∥∥∥X̃Σ
1/2
Pn
βPn√

nσ2
Pn

+
PX̃v√
n

∥∥∥∥∥∥
2

2

and we showed already in that proof that the mixed term vanishes and
‖PX̃v/

√
n‖22 → κ in Pnn -probability. For the remaining quadratic form note

that x̃i
Pnn= li(wi1, . . . , wipn)′, where li ∼ Ll and wij ∼ Lw are all inde-

pendent, for i = 1, . . . , n, j = 1, . . . , pn, in view of Condition (C3). Thus
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A := ‖X̃Σ
1/2
Pn
βPn/

√
nσ2

Pn
‖22 = 1

n

∑n
i=1(b′x̃i)

2. Clearly, E[A] = ‖b‖22 = κ and

Var[A] =
1

n
Var[(b′x̃1)2] =

1

n
Var

l21 pn∑
j1,j2

bj1bj2w1j1w2j2


≤ 1

n
E

l41 pn∑
j1,j2,j3,j4

bj1bj2bj3bj4w1j1w2j2w1j3w2j4


=

1

n
E[l41]

E[w4
11]

pn∑
j=1

b4j + 3

pn∑
j1 6=j2

b2j1b
2
j2


≤ 1

n
E[l41](E[w4

11] + 3)‖b‖42
n→∞−−−→ 0.

Thus, t2n → κ + κ = 2κ, in Pnn -probability. Moreover, σ̂2
n/σ

2
n → 1, in Pnn -

probability, because its conditional mean given X converges to 1 and its
conditional variance converges to zero (see the arguments in (A.5) and in the
lines immediately before that display). Thus |sn−1|

√
κ→ c

√
κ/2 > εc

√
κ/2,

such that the probability in (B.1) converges to 1 and the proof is finished.

Lemma B.4. If m̂n is a 0-stable predictor w.r.t. some class P of dis-
tributions on Z, then there exists a collection {gP : P ∈ P} of measurable
functions gP : X → R, such that for all P ∈ P,

Pn+1
(
{(Tn, z0) ∈ Zn+1 : Mn,p(Tn, x0) = gP (x0)}

)
= 1, and

Pn ({(Tn−1, z0) ∈ Zn : Mn−1,p(Tn−1, x0) = gP (x0)}) = 1.

Remark B.5. Note that the dependence of gP on P in Lemma B.4
can not be avoided. For example, suppose that P = {P0, P1} with disjoint
supports S0 ∩ S1 = ∅ and consider the naive algorithm

Mn,p(Tn, x0) :=

{
0, if Tn ∈ Sn0 ,
1, if Tn ∈ Sn1 .

Clearly, this algorithm is 0-stable, but it does depend on Tn. This is not in
contradiction with Lemma B.4, because Mn,p(Tn, x0) = gP (x0), where

gP (x0) :=

{
0, if P = P0,

1, if P = P1.

The paradox is resolved by noticing that since the supports S0 and S1 are
disjoint we can perfectly discriminate between P0 and P1.
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Proof of Lemma B.4. Fix P ∈ P. For i = 1, . . . , n, let zi, z
′
i ∈ Z and

x0 ∈ X , and note that∣∣Mn,p(z1, . . . , zn, x0)−Mn,p(z
′
1, . . . , z

′
n, x0)

∣∣
=

∣∣∣∣∣
n∑
i=1

[
Mn,p(z

′
1, . . . , z

′
i−1, zi, . . . , zn, x0)−Mn,p(z

′
1, . . . , z

′
i, zi+1, . . . , zn, x0)

]∣∣∣∣∣
≤

n∑
i=1

[ ∣∣Mn,p(z
′
1, . . . , z

′
i−1, zi, . . . , zn, x0)−Mn−1,p(z

′
1, . . . , z

′
i−1, zi+1, . . . , zn, x0)

∣∣+
∣∣Mn−1,p(z

′
1, . . . , z

′
i−1, zi+1, . . . , zn, x0)−Mn,p(z

′
1, . . . , z

′
i, zi+1, . . . , zn, x0)

∣∣ ].
By 0-stability, the integral of this upper bound with respect to P 2n+1 is equal
to zero. Therefore, applying Lemma B.6 with f = Mn,p, S = Zn, PS = Pn,
T = X and PT equal to the x-marginal distribution of P , the first claim
follows. The second claim is now a simple consequence of 0-stability.

Lemma B.6. Let (S,S, PS) and (T, T , PT ) be two probability spaces, and
let f : S × T → R be measurable w.r.t. the product sigma algebra S ⊗T and
the Borel sigma algebra on R. If∫

S2×T
|f(s1, t)− f(s2, t)| dPS ⊗ PS ⊗ PT (s1, s2, t) = 0,

then there exists a measurable function g : T → R, such that

PS ⊗ PT
(

(s, t) : f(s, t) = g(t)
)

= 1.

Proof. By Tonelli’s theorem we have∫
T
|f(s1, t)− f(s2, t)| dPT (t) = 0,

for PS⊗PS-almost all (s1, s2), i.e., for all (s1, s2) ∈ N c ∈ S ⊗S, where PS⊗
PS(N) = 0. Furthermore, whenever (s1, s2) ∈ N c, then f(s1, t) = f(s2, t),
for PT -almost all t, i.e., for all t ∈M(s1, s2)c ∈ T , with PT (M(s1, s2)) = 0.
For s1 ∈ S, consider Ns1 := {s ∈ S : (s1, s) ∈ N}, i.e., the s1-section of N ,
and use Tonelli again, to see that there exists a PS-null set L ∈ S, such that
PS(Ns1) = 0, for all s1 ∈ Lc.

Next, fix s1 ∈ Lc and define the set

A := A(s1) := {(s, t) ∈ S × T : s ∈ N c
s1 , t ∈M(s1, s)

c},



Steinberger, Leeb / Conditional predictive inference for stable algorithms 57

as well as the function g(t) := f(s1, t), for t ∈ T .4 We therefore have A ⊆
{(s, t) : f(s1, t) = f(s, t)} = {(s, t) : g(t) = f(s, t)} and, for s ∈ N c

s1 ,
As = M(s1, s)

c has PT -probability one. To conclude, we use Tonelli again,
to obtain

PS ⊗ PT (A) =

∫
S
PT (As) dPS(s) =

∫
Nc
s1

PT (As) dPS(s) = PS(N c
s1) = 1.
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