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Introduction Data driven generative models

Data driven generative models in finance

Generative models enter mathematical finance, in particular in view of
market generation.

o Consider
> as input some standard law P}, e.g. Wiener measure on path space, and

» Po denote some target output law, deduced from (time-series and
option) data and not necessarily fully specified.

@ A generative model can be viewed as a map G? depending on
parameters 6 which transports P, to Pp. We denote this push-forward
by Gf]P)/.

The goal is to find 0 such that GUP; ~ P which crucially depends on
the parametrization of the transport map G.
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Introduction Data driven generative models

Learning the models’ characteristics from data

o Highly parametric and overparametrized models gain in importance:

instead of a few parameters, the goal is rather to learn the model
characteristics as a whole.

@ Relying on different universal approximation theorems yields then

different classes of models. As an example of such a transport map G

we consider here..

Christa Cuchiero (University of Vienna) Sig-SDEs & affine processes January 2021

3/42



Introduction Data driven generative models

Learning the models’ characteristics from data

o Highly parametric and overparametrized models gain in importance:
instead of a few parameters, the goal is rather to learn the model
characteristics as a whole.

@ Relying on different universal approximation theorems yields then
different classes of models. As an example of such a transport map G
we consider here..

= Signature stochastic differential equations (Sig-SDEs): the model
itself or its characteristics are parameterized as linear functions of the
signature of a driving signal

@ Compare with |. Perez Arribas, C. Salvi, L. Szpruch, 2020 “Sig-SDEs
for quatitative finance”
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Part |

Signature models in finance

based on

ongoing joint work with G. Gazzani and S. Svaluto-Ferro
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Motivation and Defintion

Towards signature SDEs in finance

@ Consider a stochastic volatility model under a pricing measure Q of the
following form
dSt = U(t, St» \/1;)dW,_EL7
dV, = kQ(V,)dt + v(Ve)dW?,
with
> S the price process, V the volatility or instantanous variance process,

» W1 and W2 are correlated Q-Brownian motions and

» 0,k%, v some functions.
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Motivation and Defintion

Towards signature SDEs in finance

@ Consider a stochastic volatility model under a pricing measure Q of the
following form

dSt = U(t7 St, \/1;)(,1‘/\/3'7
dV, = kQ(V,)dt + v(Ve)dW?,

with
» S the price process, V the volatility or instantanous variance process,
» W1 and W2 are correlated Q-Brownian motions and
» 0,k%, v some functions.
@ As well known from the theory of rough paths (T. Lyons '98), solutions of

such SDEs can be approximated arbitrarily well by linear maps of the
so-called signature process of t + (t, W}, W?), denoted by W.

@ Very briefly, the signature process is the (infinite dimensional tensor algebra
valued) process of iterated integrals (in the Stratonovich sense).
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Signature SDEs (Sig-SDEs) in finance

@ In other words signature serves as linear regression basis that allows to
approximate continuous (with respect to a certain p-variation norm for
p € (2,3)) path functionals arbitrarily well.

@ We can thus approximate the price process via

Se=So+e(We)=So+ > e, W),

o< |l|<n

where £ denotes a linear map (and ¢; € R the corresponding coefficients
with respect to the basis elements e; of the tensor algebra).
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Signature SDEs (Sig-SDEs) in finance

@ In other words signature serves as linear regression basis that allows to
approximate continuous (with respect to a certain p-variation norm for
€ (2,3)) path functionals arbitrarily well.

@ We can thus approximate the price process via

Se=So+lWe) =S+ > lile,Wy),

o<|/|<n

=S+ Z (3, W4)dW, (Price-Sig-SDE)
0 o<|n)<n

where £ denotes a linear map (and ¢; € R the corresponding coefficients with
respect to the basis elements e, and € respectively of the tensor algebra).

@ Note that this covers also models with path dependent characteristics.

@ Similar Sig-SDE models have been considered by |. Perez Arribas, C. Salvi,
L. Szpruch ('20).
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Properties of Sig-SDEs

@ Advantages:

» Universality: any classical model (with path dependent charateristics)
can be arbitrarly well approximated

» Classical requirements from mathematical finance, like no arbitrage, can
be easily solved, e.g. the price is a martingale due to (Price-Sig-SDE).

> Appropriate to account for high dimensional option and time series data

» Tractability: Sig-SDEs are projections of infinite dimensional affine and
polynomial processes

@ Disadvantages:
» Parameters are no longer interpretable

» Robustness of solutions? Ranges of exotic option prices?
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Signature of a path

Signature, first studied by K. Chen ('57, '77), plays a prominent role in
rough path theory (T. Lyons ('98), P. Friz & M. Hairer ('14)). It owes its
relevance to the following three key facts:

@ The signature of a (geometric) rough path uniquely determines the
path up to tree-like equivalences (see H. Boedihardjo, X. Geng, T.
Lyons, & D. Yang ('16)).

@ Under certain conditions, the expected signature of a stochastic
process determines its law. (see . Chevyrev & T. Lyons ('16),
|.Chevyrev & H. Oberhauser ('18)).

@ Continuous path functional can be approximated by a linear function
of the time extended signature arbitrarily well.
= Universal approximation theorem (UAT).
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An overview on signatures

Definition of the signature

The signature of a continuous path X with values in RY is defined via iterated
integrals of the path as follows.

Definition

Let X be a path of finite p-variation such that the following integration makes
sense. Then the signature X1 of X over the time interval [0, T] is given by

Xr=(1,xW,.. xi0),

where for each integer n > 1,

Xg—n) = / dth X R dth € (]:Rd)(g”7 n Z 1
0<ty <<t <T

When X is a path of a continuous semimartingale we shall always define it in the
sense of the Stratonovich integral (which is a first order calculus).
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An overview on signatures

Tensor algebra

@ The signature is an element of the tensor algebra space T((RY)) given by
T((RY) := {(a0, a1, -, an,...)| forall n>0, a, € (RY)®"},

where by convention (R?)®0 = R.

@ Generic elements of T((R9)) are always denoted in bold face, e.g.

a=(ap,a,.--,an...)
@ Notation:
» T, set of multi-indexes with entries in {1,...,d}. The length of an

index / is denoted by |/|.

» (e1,...,eq) is the canoncial basis of RY.

» For any positive integer n, (e, ® --- @ €;,)(i,....ie{1,....d}» form a basis
of (R9)®n,

» Wewrite e, = ¢, ® - ®¢;, for | = (iy,...,in).
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An overview on signatures

Coordinate signature

Definition
The coordinate signature of X indexed by / = (i, ..., i,) denoted by
Ci 7(X) is defined to be

Cr(x) = | 0dXji - -+ 0 dXi,
0<ty<--<tn<T

where o stands here for a first order calculus, in particular to indicate the
Stratonovic integral in the case of a semimartingale. Thus it follows that

Xr=1+ i > G r(X)e € T((RY)).

n=1 |I|:n

Notationwise, we often write for linear functionals (e, x) as well as (u, x)
for u of the form u = >",- uxe, (also infinite sums), where ux € R and
Iy denotes some multi-index (formal dual space).
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Example

@ Let X be a one-dimensional path of finite variation. Then, for every n > 1,
the iterated integrals are given by

C(l,...,l),T(X) =
N——

n times

(X7 —X0)"
n!

and thus correspond to polynomials. This form translates one to one to
semimartingales due to the Stratonovich integral.

@ In higher dimension these expressions become more involved. Consider the
two dimensional path t — (t, B;) for B a standard Brownian motion. Then

Coy, =T, Ca,1=8Br,

T2 T T B2
Coy, 1= TR Ca2),7=TBr — / Bidt, Co1),7 = / Bedt, Co0), 7 = —-
0 0

2

*

so that we get expressions that depend on the whole path of the Brownian
motion.
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Shuffle product

@ The crucial and remarkable property is that the pointwise product of two
linear functionals (which is clearly a quadratic functional) is still a linear
functional when restricted to the space of signatures.

@ In other words every polynomial on signatures may be realized as a linear
functional which is a consequence of the following theorem (Ree ('58)).
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Shuffle product

@ The crucial and remarkable property is that the pointwise product of two
linear functionals (which is clearly a quadratic functional) is still a linear
functional when restricted to the space of signatures.

@ In other words every polynomial on signatures may be realized as a linear
functional which is a consequence of the following theorem (Ree ('58)).

Theorem
Fix two multi-indices | = (i, ...,in) and J = (ji,...,jm). Then
(e, X7)(es, X7) = (e/ W ey, X7),
where the shuffle product LI is recursively defined as
egWe=60(p®  -Qe)le)t+e (el (e, -+ ®g,)),

with e; 1 1 :=¢; and 1L ¢ := €.

v
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Towards data driven Sig-SDEs

@ Suppose that we are given the trajectory of the price process S under P in
line with a stochastic volatility model of the form

dS; = pu(Se, Vi) dt + S/ VedW;
dVe = kP (Vi) dt + v(Ve)dW, 2.

with correlated Brownian motions (W; !, W; ?).

@ Then we can infer from pathwise covariance estimation t — V; and in turn
t — I/2(Vt) == <Vt7 Vt>

@ From this we can recover estimates of correlated Q-Brownian motions

£ u(Ss, Vi)
W]_ _ ,u( sy Vs d WP,I
t /0 55\/5 t + t

t ]P(V)
W2:/ R ATs) g+ wh2,
! o Y(Vs) '

which would lead to a stochastic volatility model under Q with = k@ = 0.
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Data driven Sig-SDEs - Calibration

Calibration to time-series data

@ With these Brownian motions obtained from market data, we
compute the signature process W.

@ The first goal is now to find coefficients ¢; such that the Sig-SDE

model

Se=S0+ >, O1{er, W)

0<|l|<n

t —~
— S+ /0 S 0@, We)dw?!

0<|l|<n

t —~
=5 +/ > 4(E, W) (Mds + deJ)
0 o<lij<n 55 Vs

matches say N observed market prices (S ...,5%).

t1 0
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Data driven Sig-SDEs - Calibration

Calibration to time-series data

@ This means either matching directly the prices

N 2
argmin > <Z Ciler, W) — (S - 50))
i=1 I

or the volatility

N 2
amin 3~ (3" e ) - (/)
i=1 /

@ In both cases is just a linear regression on the components of the
signature.
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Data driven Sig-SDEs - Calibration

First results

@ Learn a Black-Scholes market (using the signature computed from the
estimated Brownian motion)

@ Compare the learned Sig-SDE model with a new Black Scholes trajectory.

Compare price trajectory. Compare price path

/J ¥

N
i

Figure: Out of sample comparison using regression on the price (left) and
regression on the volatility (right)
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Data driven Sig-SDEs - Calibration

Towards calibration to option data

@ We say that F is a signature payoff if it is a linear function of the
signature of t — (t, S¢), i.e.

F(St)= Y filer,S7).

[<m

@ Since linear functions on the signature are dense in the space
continuous path functionals, we can approximate any (exotic) payoff
(here on S) by signature payoffs.

@ Asian forwards are for instance signature payoffs.

@ The price of a signature payoff is given by 3=, <, f,(e,,E[gr])
provided that E[St] < oo for all relevant components.
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Pricing of signature payoffs

Proposition (C.C, G. Gazzani, S.Svaluto-Ferro ('21))
In a Sig-SDE model of the form

5 = 50+/ NCR AL A

o<|l|<n

the price of a signature payoff F(gr) =X lil<m fi{er, §T> can be expressed
as

EolF(S7)] = 3 fips(£) (&), Eg[Wrl),
J

where p;(£) are polynomials in the coefficients of £ and where ?J only
depends on F.
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Data driven Sig-SDEs - Calibration

Calibration to option data

@ The calibration to N options with signature payoffs and market prices
(mt,...,7N) can thus be formalized via

N 2
argmin > ow (Z Fip)(e) (e, E[Wr]) — 7r’> :
i=1 J

where w' are certain weights.
@ Advantages

» The crucial point is here that E[WT] only needs to be computed once!
(No Monte Carlo integration in each optimization step!)

» This criterion can be easily combined with the time series criterion.

@ Disadvantages

» Approximation of general payoffs is comparable with one-dimensional
approximation by polynomials.
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Data driven Sig-SDEs - Calibration

Calibration to option data

@ The calibration to N options with signature payoffs and market prices
(mt,...,7N) can thus be formalized via

N 2
argmin > ow (Z Fip)(e) (e, E[Wr]) — 7r’> :
i=1 J

where w' are certain weights.
@ Advantages

» The crucial point is here that E[WT] only needs to be computed once!
(No Monte Carlo integration in each optimization step!)

» This criterion can be easily combined with the time series criterion.
@ Disadvantages

» Approximation of general payoffs is comparable with one-dimensional
approximation by polynomials.

@ How can we compute IE[WT]?
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Calibration to option data

@ The calibration to N options with signature payoffs and market prices
(mt,...,7N) can thus be formalized via

N 2
argmin > ow (Z Fip)(e) (e, E[Wr]) — 7r’> :
i=1 J

where w' are certain weights.
@ Advantages

» The crucial point is here that E[WT] only needs to be computed once!
(No Monte Carlo integration in each optimization step!)

» This criterion can be easily combined with the time series criterion.
@ Disadvantages

» Approximation of general payoffs is comparable with one-dimensional
approximation by polynomials.

@ How can we compute E[W1]? see e.g. Friz & Hairer ('14)

@ An affine and polynomial process point view helps generically...
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Part |l

An affine and polynomial perspective on
signature SDEs

based on

e Universality of affine and polynomial processes (ongoing joint work
with S. Svaluto-Ferro and J. Teichmann)

e Infinite dimensional polynomial processes (joint work with
S. Svaluto-Ferro)
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N
Motivation

A plethora of stochastic models stem from the class of affine and polynomial
processes, even though this is not always visible at first sight.

@ Finite dimensional examples: Lévy processes, Ornstein-Uhlenbeck processes,
Feller diffusion, Wishart processes, Black-Scholes model, Wright-Fisher
diffusion (Jacobi process), ...

@ Infinite dimensional examples:

» measure valued processes: Dawson-Watanabe process, Fleming-Viot
process, Markovian lifts of Volterra processes

» Hilbert space valued processes: (forward) curve models, lifts of rough
volatility models (rough Heston, rough Wishart or rough Bergomi)

» sequence space valued processes: signature of Brownian motion
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Motivation

A plethora of stochastic models stem from the class of affine and polynomial
processes, even though this is not always visible at first sight.

@ Finite dimensional examples: Lévy processes, Ornstein-Uhlenbeck processes,
Feller diffusion, Wishart processes, Black-Scholes model, Wright-Fisher
diffusion (Jacobi process), ...

@ Infinite dimensional examples:

» measure valued processes: Dawson-Watanabe process, Fleming-Viot
process, Markovian lifts of Volterra processes

» Hilbert space valued processes: (forward) curve models, lifts of rough
volatility models (rough Heston, rough Wishart or rough Bergomi)

» sequence space valued processes: signature of Brownian motion
= Universal model classes?
= Mathematically precise statements for this universality?
= Can we embed signature SDEs in this framework?
= Method: linearize certain classes of SDEs via signature methods
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Affine and polynomial processes from a duality point of view

Definition of affine and polynomial processes

Simplest setting (for illustrative purposes): Itd diffusion in one dimension with
state space S, some (bounded or unbounded) interval of R:

dX; = b(X;)dt + /a(Xe)dB:, Xo = x, ()

with a: R — Ry and b : R — R continuous functions and B a Brownian motion.
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Definition of affine and polynomial processes

Simplest setting (for illustrative purposes): It diffusion in one dimension with
state space S, some (bounded or unbounded) interval of R:

dX; = b(X;)dt + \/a(X,)dB:, Xo = x, (%)
with a: R — R, and b : R — R continuous functions and B a Brownian motion.
Definition
A weak solution X of (x) is called polynomial process if

@ b is an affine function, i.e. b(x) = b+ Bx for some constants b and § and

@ ais a quadratic function, i.e. a(x) = a+ ax + Ax? for some constants a, «
and A.

If additionally A = 0, then the process is called affine.

We denote by A the infinitesimal generator of a diffusion of form (x), given by
Af(x) = f/(x)b(x) + 2" (x)a(x).
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Affine and polynomial processes from a duality point of view

Key properties of affine and polynomial processes

From this definition, ...

@ ... they appear as a narrow class, whose universal character is at this stage
by no means visible.

@ ... follow some remarkable implications.

» All marginal moments of a polynomial process, i.e. E[X/] can be
computed by solving a system of linear ODEs.

» Additionally, exponential moments of affine processes, i.e. E[exp(uX;)]
for u € C can be expressed in terms of solutions of Riccati ODEs
whenever E[| exp(uX;)|] < oo.
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Affine and polynomial processes from a duality point of view

Key properties of affine and polynomial processes

From this definition, ...
@ ... they appear as a narrow class, whose universal character is at this stage
by no means visible.

@ ... follow some remarkable implications.

» All marginal moments of a polynomial process, i.e. E[X/] can be
computed by solving a system of linear ODEs.

» Additionally, exponential moments of affine processes, i.e. E[exp(uX;)]
for u € C can be expressed in terms of solutions of Riccati ODEs
whenever E[| exp(uX;)|] < oo.

We here briefly present these implications from the point of view of dual
processes. This differs from the original papers

@ D. Duffie, D. Filipovi¢ & W. Schachermayer ('03); D. Filipovi¢ &
E. Mayerhofer ('09);

@ C., M. Keller-Ressel & J. Teichmann ('12); D. Filipovic & M. Larsson ('16).
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Affine and polynomial processes from a duality point of view

Methods to compute expected values

We can distinguish three different ways how to compute E,[f(X;)].

@ Kolmogorov backward equation: E,[f(X;)] = g(t, x), where
0rg(t,x) = Ag(t,x), g(0,x) = f(x).

@ Duality method: Let (U;)¢>0 be an independent Markov process with state
space U and infinitesimal generator B. Assume that there is some
f:S x U — R such that

Af (-, u)|x = Bf(x,)|y, forallxe S, ue U,

then (modulo technicalities) E,[f(X;, u)] = E,[f(x, U:)].

© Kolmogorov backward equation for the dual: E,[f(X;, u)] = v(t, u, x), where

Oev(t,u,x) = Bv(t,u,x), v(0,u,x)="f(x,u).

Christa Cuchiero (University of Vienna) Sig-SDEs & affine processes January 2021 25 /42



Affine and polynomial processes from a duality point of view

Moment formula for polynomial processes

@ For a polynomial of degree k with coefficients vector
c=(co,---,ck) € R we write p(x, c) == (c,X)x = Zf'(:o cix'.

@ Dual polynomial operator B: acting on ¢ — p(x, c) s.t.
Ap(-, ¢)|x = Bp(x,-)|c. We can identify B with a linear map Ly from R¥*1
to R¥*1 such that Ap(-, ¢)|x = (Lkc,X)k = p(x, Lkc) for all x € S.

Christa Cuchiero (University of Vienna) Sig-SDEs & affine processes January 2021 26/42




Affine and polynomial processes from a duality point of view

Moment formula for polynomial processes

@ For a polynomial of degree k with coefficients vector
c=(co,---,ck) € RFL we write p(x, ¢) = (¢, ), = Y.k, cix'.

@ Dual polynomial operator B: acting on ¢ — p(x, ¢) s.t.
Ap(-, ¢)|x = Bp(x,-)|c. We can identify B with a linear map Ly from R¥*1
to R**! such that Ap(-, ¢)|x = (Lkc,X)k = p(x, Lic) for all x € S.

Theorem (C.C., M. Keller-Ressel, J. Teichmann ('12))

Let T > 0 be fixed and let X be a polynomial process. Denote by
c(t) = (co(t), ..., ck(t))T the solution of the following linear ODE

drc(t) = Lic(t), c(0) = c e R

Then its moments are given by

Ex

V.
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Affine and polynomial processes from a duality point of view

Affine case

@ In the affine case, the function family of interest are exponentials.

@ For notational convenience we set b = 0 and a = 0 in the definiton of the
affine process so that we deal with purely linear processes.

@ Dual affine operator B: acting on u — exp(ux) such that

Aexp(u-)|x = Bexp(-x)|,, x € S.
@ To explicitely compute the form of B, define the function

R(u) := %au2 + fu.

Then, by definition Bexp(ux) = Aexp(ux) = (R(u)x) exp(ux).

@ Therefrom we can guess that B is the restriction of the following transport
operator applied to function g € C}(C,C):

Bg(u) = R(uv)g'(u).
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Affine and polynomial processes from a duality point of view

Affine transform formula - transport PDE

Applying the third method, i.e. computing the Kolmogorov equation for the dual
process, yields...

Theorem (D. Duffie, Filipovi¢, Schachermayer ('03), C.C. and J.
Teichmann ('18))

Let T > 0 be fixed and let X be an affine process. Let u € C such that
E[| exp(uX7)|] < 00. Then,

Ey [exp(uX7)] = v(T, u, x),
where v(t, u, x) solves the following linear PDE of transport type

Orv(t,u,x) = Bv(t,u,x) = R(u)o,uv(t,u,x), v(0,u,x)=-exp(ux), telo0,T]
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Affine transform formula - Riccati ODE

Applying the duality method now to the deterministic dual process ¥(t, u),
given as solution of the Riccati ODE 0;1(t, u) = R(¢(t, u)), yields ...

Theorem (cont.)

The unique solution to this transport equation can be expressed by

v(t, u,x) = exp(¥(t, u)x),

where 1) (the dual process here) solves the following Riccati differential
equation

8t¢(t7 u) = R(¢(ta U)), 1/}(07 u) = u.
Hence, Ey [exp(uXT)] = exp((T, u)x).
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Affine transform formula - Riccati ODE

Applying the duality method now to the deterministic dual process ¥(t, u),
given as solution of the Riccati ODE 0;1(t, u) = R(¢(t, u)), yields ...

Theorem (cont.)

The unique solution to this transport equation can be expressed by

v(t, u,x) = exp(¥(t, u)x),

where 1) (the dual process here) solves the following Riccati differential
equation

8t¢(t7 u) = R(¢(ta U)), 1/}(07 U) = u.
Hence, Ey [exp(uXT)] = exp((T, u)x).

v

We have here treated the one-dimensional diffusion setting, mainly to ease

notation and technicalities. This is over now ...
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Sig-SDEs as affine and polynomial processes

Affine processes on the extended tensor algebra

o State space S C T((R9))
o S* ={uc T((RY)) +iT((RY))|[{u,x)| < oo for all x € S}
o U :={ue T((RY)+iT((R))|x > |exp({u,x))| is bounded on S}

Definition

We call a linear operator £ of affine type if there exists a distribution
determining subset &/ C U and a map R : U — S*,u — R(u) such that

Lexp((u, x)) = exp((u, x))(R(u),x)

on the family of functions {x — exp((u,x)) |u € U}.
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Sig-SDEs as affine and polynomial processes

Affine processes on the tensor algebra space

An S-valued process (X;)¢>o defined on some filtered probability space
(Q, F, (Ft)e>0,P) is called a solution to the martingale problem for L if

Q@ Xy = xg P-a.s. for some initial value xg € S,

@ for every u € U there exists a cadlag version of ((u,X;)):>0 and
((R(u), X))o and

© the process
t
M = exp({u. ) — exp((ux0)) — [ Lexp((u, )
0
defines a local martingale for every u € U.

Definition

Suppose that L is of affine type and that the corresponding martingale problem
admits a unique solution (X;)¢>0. Then (X;):>0 is called S-valued affine process.
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Sig-SDEs as affine and polynomial processes

Affine transform formula

Theorem (C.C., S. Svaluto-Ferro, J. Teichmann ('21))

Let (X¢)e>0 be an S-valued affine process with initial value xo Set

g(u,x) := sup [(R(u)™, x(M)], ueld,xes
neN

and suppose that for eachu € U and | € 7,4
E[sggg(u,Xtﬂ exp({u, Xy))|] < oo, and E[sgp;(1+|<e,,Xt>|)| exp({u, X;))|] < 0.
t< t<

Then for all u € U
EXO[SXP(<U7XT>)] = V( T,U,Xo),

where v(t,u) is a solution to the following transport equation

Orv(t,u,x9) = (R(u), Vyuv(t,u,xo)), v(0,u,x0) = exp({u,xo)).
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Sig-SDEs as affine and polynomial processes

Affine transform formula

Theorem (cont.)

Suppose that there exists a solution of the tensor algebra valued Riccati equation
up to time T with values in U such that

O (Y (t, u),x) = (R(¥(t, u)),x), $(0,u) =u.
Then, if E[sup <7 [{R(1(s,u)), X¢) exp({1(s,u), Xt))|] < oo, it holds that

Elexp((u, X7))] = exp((:(T , u), x0)).
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Back to Sig-SDE models

@ Consider a generalization of the previous Sig SDE model with state space
S C R71 given by

dX; = b(X;)dt + \/a(X,)dB, (SigSDE)
where B is a d — 1 dimensional standard Brownian motion B and (Xt)tzo

denotes the signature of t — (X, t).

@ Here, b and a are linear functions, more precisely b : T((R9)) — R9~! with
bi(x) = (b;,x) and a: T((RY)) — S~ with a;(x) = (aj;, x), where
bi,a; € T((RY)).

= Truly general class of diffusions whose coefficients can depend on the whole
path.

@ We suppose that a solution to (SigSDE) exists uniquely on an appropriate
state space S.

@ Note the PriceSigSDE model from before can be embedded in this
framework by considering the process X = (W?*, W2 5).
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Sig-SDEs are (formally) affine processes
Lemma

Consider the signature process X; of t — (Xe, t) with X given by (SigSDE).
Suppose that for some U C U the map R : U — T((R?)) given by

1
R(u) = Z (E(e;1 ® - ® ey _,) W aj, i, +(e; ® - ®ej,_,) W b,”)

1
v 5 Z ((eil - ® e"\l\—l) L (ejl K- ej|J\—1) L aimjm) uuy,
1,JET,

satisfies R(u) € §* for each u € U. Fix then u € U and set
L exp({u,x)) = exp({u, x))(R(u),x) for each x € S. Then

exp((u,§§t>)—exp /Eexp §A§ ))ds

is a local martingale and L is of affine type.
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Sig-SDEs are (formally) affine processes

Corollary

Let X be given by (SigSDE) and R as of the previous lemma. Suppose there
exists a distribution determining set U C U such that R(U) C 8*. Then

~

@ the signature process (Xt)r>o of t — (Xt, t) is an affine process taking
values in T((R9));

@ X is the projection of an affine process.

@ Difficulty: Determine the set U and verify the conditions on R, which are
needed to guarantee that the affine transform formula holds.

@ Generic methodology, to obtain power series expansions of the logarithm of
the characteristic function/Laplace transform with coefficients solving an
infinite dimensional Riccati equation.

@ The corresponding convergence radii have to be determined.
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Sig-SDEs as polynomial processes and expected signature

Note that in this framework affine and polynomial processes coincide, and we can
therefore also apply polynomial technology.

Theorem (C.C., S. Svaluto-Ferro, J. Teichmann ('21))

Consider the signature process Xy of t (Xt, t) with X given by (SigSDE). Fix
some multi-index | = (iy, ..., i) and define an operator L (corresponding to the
dual polynomial operator) by

1
Le = E(eh K eimfz) L aimfﬂ'm + (eh & ei\l\—l) L bim'

Consider exp(TL)e; = > 2, I—!kLke, and suppose that (exp(TL)e;, Xo ) < oo.

(1,0,,...)

IFE[sup, < 1 |(exp(tL)er, Xs)[] < 0o and E[sup, ,< 7 |(Lexp(tL)er, X,)[] < oo,
then

E[(e;, X1)] = (exp(TL)es, Xo ).
(1,0,0,...)

v
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One dimensional diffusions with analytic characteristics

One dimensional diffusions with analytic characteristics ...

@ Consider a one-dimensional diffusion process X on S C R of the form

dX; = (b, X.)dt + \/(a, Xs)dB:,  Xo = o,

where (X¢):>0 denotes its signature (without t part here) and b, a are such
that (b, x) < oo and (a,x) < oo for all x € S.

@ Since X; = (1, X; — x, (ngx)z, e (X‘;X)n, ...), we can reparametrize and
write
dX; = b(X:)dt + \/a(X;)dB:, Xo = x, (SDE - 1d)

where the above conditions translate to b and a being analytic functions, i.e.

b(x) = Z b,x", a(x) = Z anx",
n=0 n=0

converging on an open neighborhood of S.
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. are projections of affine processes

Assumption
@ Let X be specified by (SDE - 1d) and let A : D(A) C Go(S) — Go(S). Set
U = {u=(un)nen | x — exp(>_rey unx") € D(A)}.
® For fixed T, all n € Ny and u € U, E[sup, 1 |X¢|" exp(3_,2 4 unX{)] < 0.

v

Theorem (C.C, S. Svaluto-Ferro, J. Teichmann ('21))

Under the above assumption, the process (1, X, X2,..., X[, ...) is affine.
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One dimensional diffusions with analytic characteristics

. are projections of affine processes

Assumption
@ Let X be specified by (SDE - 1d) and let A : D(A) C Go(S) — Go(S). Set
U = {u=(un)nen | x — exp(>_rey unx") € D(A)}.
® For fixed T, all n € Ny and u € U, E[sup, 1 |X¢|" exp(3_,2 4 unX{)] < 0.

v

Theorem (C.C, S. Svaluto-Ferro, J. Teichmann ('21))

Under the above assumption, the process (1, Xy, X2,...,X[,...) is affine. By
further strenghtening the conditions the affine transform formula holds

E, [exp(z upX{')] = exp Zz/},, (t,u)x"), with 9:(t,u) = R(¢(t,u)),

where 1) solves an sequence valued Riccati equation.
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One dimensional diffusions with analytic characteristics

. are projections of affine processes

Assumption
@ Let X be specified by (SDE - 1d) and let A : D(A) C Co(S) — Co(S). Set
U = {u=(un)nen | x — exp(>_rey unx") € D(A)}.
® For fixed T, all n € Ny and u € U, E[sup, 1 |X¢|" exp(3_,2 4 unX{)] < 0.

v

Theorem (C.C, S. Svaluto-Ferro, J. Teichmann ('21))

Under the above assumption, the process (1, X;, X2,..., X0, ...) is affine. By
further strenghtening the conditions the affine transform formula holds

Ex [exp(z upX!)] = exp Zz/},, (t,u)x™), with 0y)(t,u) = R((t,u)),

where 1) solves an sequence valued Riccati equation.

Some recent related literature on expansions of moment generating functions:

@ E. Alos, J.Gatheral & R. Radoicic ('20); P. Friz, J. Gatheral & R. Radoicic
('20): “Forests, cumulants, martingales”
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One dimensional diffusions with analytic characteristics

Relation to polynomial technology

Theorem (C.C, S. Svaluto-Ferro, J.Teichmann ('21))
Let X be specified by (SDE - 1d) and consider the following infinite matrix

0 bo ao 0 0 0
0 b a1 + 2bg 3ao 0 0
L=]0
0 bn an + 2bnfl 3anfl T 3bn72 ot o MBO
0 .

Suppose that the linear ODE 0:(c(t),x) = (Lc(t),x) with c(0) = c admits a solution
on [0, T] such that (c(t),x) < co for every x € S and t € [0, T|. Suppose furthermore
that E[sup, <7 | > "o ca(t) XS]] < 00 and E[sup, <7 | Yoo (Le(t))aX{|] < co. Then

Ey, [Z Xt | = Z en(T)xg-
=0

n=0
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One dimensional diffusions with analytic characteristics

Examples

For the following examples we can for instance compute the moment generating
function

E[exp(uX)] = Y cn( T)xS

for appropriate u by solving the above infinite dimensional linear ODE with inital

value ¢ = (1, u,2,...,‘;—k!,...).

@ Classically non-polynomial examples:
> dXt -V Xt(]- - Xt)dBt on [0, 1]
> dXt = K/Zioi]_ 7T(Xt{ — Xt dt + Xt 1 — Xt dBt on [0 1]

@ Affine Feller diffusion: dX; = /a1 X;dB; on R,. For u < 0 we get the well
known expression for the Laplace transform

0 u”
uxop
Xo [exp UXT E | XO = exp(TuT).
n=0 2
\—,_/
an(T)
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Conclusion

Conclusion

@ Generic classes of SDEs can be proved to be (formally) affine by lifting them
to the signature space where polynomials are linear functionals.

@ Power series expansions for the Laplace transform/characteristic function
and moments via affine and polynomial technology

@ Signature SDEs can be embedded in an affine and polynomial framework
which in particular allows to compute expected signature via polynomial
technology.

=- Sig-SDEs models thus distinguish themselves in

» universality, since the dynamics of all classical models can be arbitrarily
well approximated

» efficient pricing, hedging and calibration (through expected signature).

Thank you for your attention!
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