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Motivation and Research Objectives

Deep learning has to struggle with two problems:

Overfitting (often modern deep nets include millions of learnable
parameters)

Lack of model uncertainty information (only point estimates of the
network parameters are computed)

Model uncertainty directly translates to prediction uncertainty

Missing model uncertainty information is critical in the medical field or for
self-driving vehicles

Both problems are well addressed by using Bayesian statistics

A new approach for training deep nets in a Bayesian way will be presented
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Short Introduction to Classification Networks

Classification Networks

A classification network is a mapping f : D ⊆ Rα → [0, 1]c

f(x; w)k is used to model the probability that the input x ∈ D belongs to
class k ∈ {1, ..., c}, i.e. P(x belongs to class k) = f(x; w)k

Artificial neurons are the units neural networks consist of

A neuron η is a real valued mapping:

η : Rn → R x̃ 7→ g
(

wT
η x̃ + bη

)
x̃ denotes outputs of other neurons

g denotes an activation function, such as the rectified linear unit:

g(x) = max{0, x}
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Short Introduction to Classification Networks

Deep Networks

Deep networks consist of (many) disjoint sets S1, ..., Sd of neurons;
connections are allowed between two successive sets
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Figure: Neural network

Often deep networks require exponential less parameters than shallow
ones to approximate a given mapping well
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Short Introduction to Classification Networks

Convolutional Neural Networks (CNNs)
State of the art image classifiers consist of three layer-types:

1 Convolutional layers

Extract features (2d arrays) of an image

Feature extraction: a kernel (small 3d array) is slidden over the previous
layer

2 Pooling layers: compress the extracted features

3 Fully connected layers: use the compressed features for classification

Figure: CNN example
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Bayesian Deep Learning via Variational Inference

Variational Inference

Let W denote the random network parameters and D = {X, y} the
observed data (instances & corresponding class labels)

The posterior p(w|y,X) is intractable, because of the high dimensional
integral in the denominator:

p(w|y,X) =
p(y|w,X)p(w)∫
p(y|w,X)p(w) dw

Variational inference aims at approximating the posterior p(w|y,X) with
another parametric distribution qφ(w)

The Kullback-Leibler divergence

DKL(qφ(w)||p(w|y,X)) := Eqφ(w)

(
ln

qφ(w)

p(w|y,X)

)
is minimized
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Bayesian Deep Learning via Variational Inference

Since the posterior is unknown DKL(qφ(w)||p(w|y,X)) cannot directly be
minimized

Therefore, the negative log evidence lower bound LVI is minimized

LVI = −Eqφ(w)
ln p(y|X,w) + DKL(qφ(w)||p(w))

Minimization of LVI is equivalent to minimization of
DKL(qφ(w)||p(w|y,X))

Comparison to the classical approach:

Since W is random the expected likelihood is maximized

Instead of the L2-norm the KL-divergence is penalized
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Bayesian Deep Learning via Variational Inference

Prediction and Prediction Uncertainty

The posterior predictive distribution p(y∗|x∗, y,X) reflects the belief in a
class label y∗ for a given example x∗ after observing data y,X:

p(y∗|x∗, y,X) =

∫
p(y∗|w, x∗)p(w|y,X) dw

p(y∗|x∗, y,X) can be approximated by computing the mean of multiple
network outputs with parameters sampled from qφ(w)

One can estimate credible intervals for the probability that x∗ belongs to
class y∗ by computing empirical quantiles of the random network outputs
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Bayesian Deep Learning via Variational Inference

Overview of Selected Variational Distributions from Literature

Gaussian distribution with a diagonal covariance matrix

Graves (2011), Blundell et al. (2015)

Dropout as Bernoulli variational distribution (randomly dropping a neuron
in layer i − 1 is equivalent setting all weights in layer i to zero, which
represent connections to this one neuron)

Gal and Ghahramani (2015)
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Overview of New Approach

Proposed Variational Distribution

The variational distribution presented aims at satisfying the following
requirements:

Network parameters can be correlated

Enables an exchange of information between different parts of the network

Leads to more accurate uncertainty estimates than methods which assume
independence

The number of parameters to be optimized does not differ significantly
from the non-Bayesian case

Bernoulli dropout (Gal and Ghahramani, 2015) works well and does not
introduce additional parameters (except of the dropping rate)

Allows for an easy interpretation of the additional parameters

Should guarantee that the difficulty of the network optimization does not
increase significantly
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Overview of New Approach

Let Wi denote the random weights of layer i and Bi denote the random
bias terms of layer i (i = 1, ..., d)

Variational distribution: qφ(w) =
d∏

i=1

qφi
(wi )qφbi

(bi )

qφi
(wi ), qφbi

(bi ) denote the densities of normal distributions with
expectation vectors mi ,mbi and tridiagonal covariance matrices

The variances are given by τ 2
i m2

i and τ 2
bim

2
bi , respectively

The correlations are assumed to be identical and given by ρi and ρbi ,
respectively

Only 2 parameters are used (per layer) to regulate the variance in
proportion to the expectation
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Overview of New Approach

Prior

p(w) =
d∏

j=1

p(w j)p(bj),

where p(w j) denotes the density of N(µj , ζ
2
j IKj ) and p(bj) denotes the

density of N(µbj , ζ
2
bj Ikj )

For µj = µbj = 0 (j = 1, ..., d) the network parameters are shrunken
towards zero (compare to Ridge regularization)

For µj ,µbj 6= 0 (j = 1, ..., d) a priori knowledge regarding the network
parameters can be modeled
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Experimental Results

Preliminary Remarks

The presented approach was implemented by extending the
fully-connected layer and the convolutional layer of the popular deep
learning framework Caffe (developed by Berkeley AI Research)

In the experimental studies the following holds:

The prior is used with the specification µj = µbj = 0 (j = 1, ..., d)

The Model is trained according to the following approaches:

Proposed approach (Gauss cor.)

Proposed approach without correlations (Gauss ind.)

Bernoulli Variational distribution (Gal and Ghahramani, 2015)
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Experimental Results

MNIST & LeNet

The proposed Bayesian approach was evaluated on the MNIST dataset
with the architecture LeNet

MNIST dataset consists of 70, 000 images of handwritten digits (60, 000
for training, 10, 000 for testing)

LeNet:

1 Convolutional layer with 20 kernels of size 5× 5× 3

2 Convolutional layer with 50 kernels of size 5× 5× 20

3 Fully connected layer with 250 neurons

4 Fully connected layer with 10 neurons

Figure: Sample images from the MNIST dataset.
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Experimental Results

Prediction Accuracy Comparison

Table
Relative frequency of misclassified images. The predictions are based on 200 samples

from the corresponding variational distribution per test image, respectively.

Model Test error
Gauss cor. 0.61%
Gauss ind. 1.00%
Bernoulli 0.78%
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Experimental Results

Overview Variational Parameters

Table
Variational Parameters ρj , ρbj , τj and τbj (j = 1, ..., 4).

Layer τj τbj ρj ρbj
Convolutional 1 0.03 0.05 -0.44 0.03
Convolutional 2 0.35 0.05 -0.21 -0.01
Fully connected 1 2.02 0.06 -0.15 -0.01
Fully connected 2 0.06 0.05 -0.18 0.01
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Experimental Results

Prediction Uncertainty - Correct Classification
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Figure: Boxplots of 200 random network outputs for a representative correct
classification result.

17 / 23



18

Experimental Results

Prediction Uncertainty - Incorrect Classification

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1 2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boxplots random network outputs 
 (for one example)

Class

R
an

do
m

 n
et

w
or

k 
ou

tp
ut

s

true:  2
predicted:  0

Figure: Boxplots of 200 random network outputs for a representative incorrect
classification result.
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Experimental Results

Usefulness of Prediction Uncertainty

Consider a predicted class (class with highest a posteriori probability) as quite
certain according to

criterion (i) if the α credible interval of this class does not overlap with
the intervals of the other classes

criterion (ii) if its posterior probability is greater than or equal to α.

Table
Overview of certain and uncertain prediction results (proposed model)

α Prediction Certain (i) Uncertain (i) Certain (ii) Uncertain (ii)

95% correct 9587 352 9563 376
95% wrong 8 53 8 53
99% correct 9371 568 9133 806
99% wrong 6 55 4 57
99.999% correct 9112 827 4665 5274
99.999% wrong 5 56 0 61
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Experimental Results

Figure: Images for which the proposed model is certain about the wrong predictions
(α = 95%, criterion (i) and (ii) lead to the same images).
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Experimental Results

Quality of Prediction Uncertainty

Consider two approaches to measure the overall quality of the uncertainty
information:

Log-likelihood of test data log[p(ytest |Xtest , ytrain,Xtrain)]

Brier score of test data: Mean of squared Euclidean distance between
true class probabilities and estimated class probabilities

Table
Log-likelihood and Brier score of the test dataset

Model Log-likelihood Brier score
Gauss cor. -220.9156 0.01041743
Gauss ind. -336.4502 0.01522011
Bernoulli -270.3255 0.01253694
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Thank you for your attention!

Any questions?
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