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Stochastic Impulse Control

Stochastic control problems with a strictly positive lower bound on the
cost per control action.
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Applications: Harvesting, inventory control, real options, control of exchange rates,
optimal investment with transaction costs, ...
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Impulse Control: General Formulation



The General Impulse Control Problem

Consider an Rn-valued system X = XΛ controlled by an impulse control Λ =
{(τk,∆k)}k∈N as follows:

dX(t) = µ
(
X(t)

)
dt+ σ

(
X(t)

)
dW (t), t ∈ [τk, τk+1),

X(τk)= Γ
(
X(τk−),∆k

)
,

where

. the stopping times τk are increasing and do not accumulate in that

P
[
limk→∞ τk > T

]
= 1,

. the impulses ∆k are chosen from a state-dependent set Z(X(τk−)) ⊂ Rm.

The objective is to find a maximizer of

V(t, x) = sup
Λ∈A(t,x)

E
[∑
k∈N

K
(
XΛ
t,x(τk−),∆k

)
1{τk≤T} + g

(
XΛ
t,x(T )

)]
.
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The �asi-Variational Inequalities

Classical Theory: Compute the value function V by solving

min
{
−∂tV(t, x)− LV(t, x),V(t, x)−MV(t, x)

}
= 0,

V(T, x) = g(x),

where L denotes the infinitesimal generator of the uncontrolled state process
given by

LV(t, x) , µ(x)>DxV(t, x) +
1

2
tr
[
σ(x)σ(x)>D2

xV(t, x)
]
,

andM is the maximum operator given by

MV(t, x) , sup
∆∈Z(x)

[
V
(
t,Γ(x,∆)

)
+K(x,∆)

]
.

Notation: We refer to the PDE as the �asi-Variational Inequalities (QVIs).
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A Candidate Optimal Control

Observe that V ≥MV

and

. if V(t, x) >MV(t, x), an impulse in state (t, x) cannot be optimal,

. if V(t, x) =MV(t, x), an impulse in state (t, x) is expected to be optimal,

. the optimal impulse ∆∗ ∈ Z(x) in state (t, x) should be chosen to be a
maximizer forMV(t, x).

Time
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{V =MV}

{V >MV}

Problem: Verification requires a solution of the QVIs which is su�iciently smooth
to apply Itō’s formula.
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to apply Itō’s formula.



A Candidate Optimal Control

Observe that V ≥MV and

. if V(t, x) >MV(t, x), an impulse in state (t, x) cannot be optimal,

. if V(t, x) =MV(t, x), an impulse in state (t, x) is expected to be optimal,

. the optimal impulse ∆∗ ∈ Z(x) in state (t, x) should be chosen to be a
maximizer forMV(t, x).

Time

Sy
st

em

{V =MV}

{V >MV}

Problem: Verification requires a solution of the QVIs which is su�iciently smooth
to apply Itō’s formula.
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Superharmonic Functions and Stochastic Perron



An Implicit Optimal Stopping Problem

By the (heuristic!) Bellman principle, we expect that

V(t, x) = sup
τ∈Tt

E
[
MV

(
τ, X̄(τ)

)]
where X̄ denotes the uncontrolled portfolio process. This is an implicit optimal
stopping problem with rewardMV .

The general theory of optimal stopping lets us expect:

. V is the smallest superharmonic function dominating the rewardMV .

. If V is lower semicontinuous andMV is upper semicontinuous, then the first
hi�ing time of the set I = {V =MV} is optimal.

Typically: MV is upper semicontinuous if V is upper semicontinuous. So we es-
sentially need V to be continuous.
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The Verification Theorem

Let H be the set of upper semicontinuous functions h : [0, T ]× Rn → R with

. h is superharmonic with respect to the uncontrolled state process, i.e.
h(·, X̄) is a strong supermartingale,

. h dominates the reward, i.e. h ≥Mh,

. h(T, ·) = g and suitable growth/integrability conditions.

Verification "Theorem"

Suppose that V is continuous and the candidate optimal strategy does not
accumulate. Then V is the pointwise minimum of H and the candidate
optimal strategy is indeed optimal.

Proof: Iteratively solve the implicit optimal stopping problem. The argument adapts
classical optimal stopping techniques and uses the fact that V is the pointwise min-
imum of H.
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Continuity of the Value Function

How can we prove the continuity of V?

We adapt the Stochastic Perron Method:

(1) Show that the pointwise minimum V of H is an upper semi-continuous viscos-
ity subsolution of the QVIs satisfying V ≥ V .

(2) Approximate V from below by a monotone sequence {vk}k∈N (restrict to at
most k impulses, numerical schemes, ...) and show that V , limk→∞ vk is a
lower semi-continuous viscosity supersolution of the QVIs with V ≤ V .

(3) Then V ≤ V ≤ V. Now apply viscosity comparison (if it holds) so that V ≤ V
and hence

V = V = V

is continuous, the unique viscosity solution of the QVIs, and the pointwise
infimum of H.
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Discussion of the Approach

Our procedure is based on three ingredients:

. Superharmonic function techniques in optimal stopping

. The stochastic Perron method

. Stability of viscosity solutions

Advantages of the approach:

. Works under very general conditions and is flexible;

. Viscosity characterization without having to prove the Bellman principle;

. If V can a priori be shown to be continuous, the superharmonic function char-
acterization is easy and there is no need for viscosity arguments.

Challenges when applying the approach:

. The bo�leneck is viscosity comparison, needed for continuity of V ;

. Admissibility of the candidate optimal control has to be checked on a case-by-
case basis. This is a general problem though.
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Optimal Investment with Transaction Costs

We assume that the R2-valued portfolio process X evolves as

dX1(t) = rX1(t)dt, t ∈ [τk, τk+1),

dX2(t) = µX2(t)dt+ σX2(t)dW (t), t ∈ [τk, τk+1),

X1(τk) = X1(τk−)−∆k − C(∆k),

X2(τk) = X2(τk−) + ∆k.

We consider the following two cases:

C(∆) = γ|∆|+K Constant and Proportional
C(∆) = min{max{Kmin, γ|∆|},Kmax} Capped Proportional

A portfolio x ∈ R2 is solvent if it has a positive liquidation value L(x) ≥ 0, where

L(x) ,

{
x1 + x2 − C(−x2) if x2 < 0,

x1 +
(
x2 − C(−x2)

)+ otherwise.

The set S ⊂ R2 of solvent portfolios is called the solvency region.
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The Optimization Criterion

For simplicity, we restrict to (positive) power utility

U : R+ → R, ` 7→ U(`) ,
1

p
`p with p ∈ (0, 1).

The objective is to maximize expected utility of terminal wealth, i.e.

V(t, x) = sup
Λ∈A(t,x)

E
[
U
(

L
(
XΛ
t,x(T )

))]
,

whereA(t, x) denotes the set of admissible strategies Λ for the initial state (t, x),
i.e. the set of strategies Λ for which

L
(
XΛ
t,x

)
≥ 0 on [t, T ].



Discontinuity of the Value Function

The general theory does not apply directly due to, e.g., the constrained state space.
However, this is to be expected. It should not be too di�icult to adapt the arguments.

Or so we thought.

Problem: The value function V is not continuous. In particular, the usual viscosity
arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Idea: Localize the viscosity argument by spli�ing the solvency region as follows:

. x1 ≥ 0 and x2 ≥ 0: Long Portfolios,

. x1 ≥ 0 and x2 < 0: Short Portfolios,

. x1 < 0 and x2 ≥ 0: Borrowing Portfolios.

Di�iculty: The QVIs have a non-local term: V(t, x)−MV(t, x).



Discontinuity of the Value Function

The general theory does not apply directly due to, e.g., the constrained state space.
However, this is to be expected. It should not be too di�icult to adapt the arguments.

Or so we thought.

Problem: The value function V is not continuous. In particular, the usual viscosity
arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Idea: Localize the viscosity argument by spli�ing the solvency region as follows:

. x1 ≥ 0 and x2 ≥ 0: Long Portfolios,

. x1 ≥ 0 and x2 < 0: Short Portfolios,

. x1 < 0 and x2 ≥ 0: Borrowing Portfolios.

Di�iculty: The QVIs have a non-local term: V(t, x)−MV(t, x).



Discontinuity of the Value Function

The general theory does not apply directly due to, e.g., the constrained state space.
However, this is to be expected. It should not be too di�icult to adapt the arguments.

Or so we thought.

Problem: The value function V is not continuous. In particular, the usual viscosity
arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Idea: Localize the viscosity argument by spli�ing the solvency region as follows:

. x1 ≥ 0 and x2 ≥ 0: Long Portfolios,

. x1 ≥ 0 and x2 < 0: Short Portfolios,

. x1 < 0 and x2 ≥ 0: Borrowing Portfolios.

Di�iculty: The QVIs have a non-local term: V(t, x)−MV(t, x).



Discontinuity of the Value Function

The general theory does not apply directly due to, e.g., the constrained state space.
However, this is to be expected. It should not be too di�icult to adapt the arguments.

Or so we thought.

Problem: The value function V is not continuous. In particular, the usual viscosity
arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Idea: Localize the viscosity argument by spli�ing the solvency region as follows:

. x1 ≥ 0 and x2 ≥ 0: Long Portfolios,

. x1 ≥ 0 and x2 < 0: Short Portfolios,

. x1 < 0 and x2 ≥ 0: Borrowing Portfolios.

Di�iculty: The QVIs have a non-local term: V(t, x)−MV(t, x).



Discontinuity of the Value Function

The general theory does not apply directly due to, e.g., the constrained state space.
However, this is to be expected. It should not be too di�icult to adapt the arguments.

Or so we thought.

Problem: The value function V is not continuous. In particular, the usual viscosity
arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Idea: Localize the viscosity argument by spli�ing the solvency region as follows:

. x1 ≥ 0 and x2 ≥ 0: Long Portfolios,

. x1 ≥ 0 and x2 < 0: Short Portfolios,

. x1 < 0 and x2 ≥ 0: Borrowing Portfolios.

Di�iculty: The QVIs have a non-local term: V(t, x)−MV(t, x).



Discontinuity of the Value Function

The general theory does not apply directly due to, e.g., the constrained state space.
However, this is to be expected. It should not be too di�icult to adapt the arguments.

Or so we thought.

Problem: The value function V is not continuous. In particular, the usual viscosity
arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Idea: Localize the viscosity argument by spli�ing the solvency region as follows:

. x1 ≥ 0 and x2 ≥ 0: Long Portfolios,

. x1 ≥ 0 and x2 < 0: Short Portfolios,

. x1 < 0 and x2 ≥ 0: Borrowing Portfolios.

Di�iculty: The QVIs have a non-local term: V(t, x)−MV(t, x).



Spli�ing the Solvency Region

Sborrow

Slong

Sshort

x2 (Stock)

x1 (Cash Holdings)

•
x



Spli�ing the Solvency Region

Sborrow

Slong

Sshort

x2 (Stock)

x1 (Cash Holdings)

•
x



Solution of the Optimal Investment Problem

Adapting the general theory, we are able to show:

(1) Each restriction of V is a discontinuous viscosity solution;

(2) A comparison principle for the QVIs holds

, implying that
. each restricted function is continuous and extends to a continuous

function on the closure of its domains (i.e. onto the axes),

. V is the unique viscosity solution in the above localized sense,

. V is globally upper semicontinuous;

(3) The candidate optimal strategy does not accumulate and is indeed optimal.
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Numerical Results: Capped Proportional Costs
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Conclusion

Conclusions:

• We develop a new machinery to solve stochastic impulse control problems.

• The approach combines ideas from superharmonic functions in optimal stop-
ping, viscosity solutions, and the stochastic Perron method.

• We successfully apply the approach to transaction cost problems in which the
value functions turn out to be truly discontinuous.

• Nevertheless, we establish uniqueness of the value function as a viscosity so-
lution, piecewise continuity, and global upper semicontinuity.

• Despite the lack of global continuity, we can construct optimal strategies.

• Numerical examples suggest a rich structure of optimal trading regions de-
pending on the cost structure.

Thank you for the a�ention!
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