
Zig-zag Subsampling Quasi-stationary Monte Carlo methods

Principled subsampling and super-efficiency for
Bayesian inference

Gareth Roberts, University of Warwick

Joint work with Paul Fearnhead, Joris Bierkens, Murray
Pollock, Andi Wang, Adam Johansen, and others ...



Zig-zag Subsampling Quasi-stationary Monte Carlo methods

Talk outline

• The zig-zag as an alternative to MCMC. “The Zig-Zag
Process and Super-Efficient Sampling for Bayesian Analysis of
Big Data” arXiv:1607.03188, Ann Stat 2019

• Quasi-stationary Monte Carlo and the ScaLE algorithm “The
scalable Langevin exact algorithm: Bayesian inference for big
data” arXiv:1609.03436

Both these ideas are examples of Continuous-time Monte Carlo
algorithms.

Super-Efficiency:

computational cost of running algorithm

cost of one single likelihood evaluation
−→ 0

in the big data asymptotic.
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Likelihood intractability due to data size

MCMC is the workhorse of Bayesian inference. Since it requires
large numbers of realisations of the posterior density π(x), it relies
on these evaluations to be quick. However connsider (for example)
the big (tall) data case:

π(x) =
n∏

i=1

πi (x)

Evaluation of π(x) is typically an O(n) calculation.

Does that mean that exact Bayesian inference is not realistically
possible for huge data sets?

Maybe we can get away with just computing some of π at each
step? This is known as a subsampling approach.
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Piecewise-deterministic Markov processes

Continuous time stochastic process, denote by Zt .

The dynamics of the PDP involves random events, with
deterministic dynamics between events and possibly random
transitions at events.

(i) The deterministic dynamics. eg specified through an ODE

dzt
dt

= Φ(zt), (1)

So
zs+t = Ψ(zt , s)

for some function Ψ.

(ii) The event rate. Events occur at rate, λ(zt),

(iii) The transition distribution at events. At each event time τ , Z
changes according to some transition kernel
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PDMP

Date back to 1951 paper by Mark Kac on the telegraph process.

Mathematical foundations: Davis (1984, JRSS B)

Non-reversible Markov process.

Intrinsically continuous in time unlike (almost all) algorithms. Why
would they ever be useful for simulation?

Unlike diffusion processes they are comparatively understudied, and
underused (either for models or in stochastic simulation).

.... until recently
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One-dimensional Zig-Zag processes on (respectively) Gaussian and
Cauchy targets.
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Canonical Zig-Zag

State (Xt ,Vt) in dimension d .

dXt = Vt dt

V
(i)
t− → 1− V

(i)
t− at rate

λi (Xt ,Vt) = λ0i (Xt ,Vt) ≡ max

{
0,−V (i)

t−
∂ log π(Xt−)

∂X (i)

}
Invariant distribution is

πE (x , v) ∝ π(x)

ie in stationarity X and V are independent with V being uniform
over all configerations: (±1,±1, . . .± 1)
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Alternatives to Zig-Zag

Closely related to another PDMP scheme, the bouncy particle
sampler (BPS), [Bouchard-Côté et al., 2015].

 

Many alternatives/variants available.
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Refreshment

Back to Zig-Zag

There is a lot more flexibility!

For instance, can take

λi (x , v) = λ0i (x , v) + ν(x)

for any function ν.

Why might we do this?

To help visit different parts of the state space.

But the larger ν is, the closer to reversibility.

The canonical Zig-Zag is the most non-reversible.
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Implementation

How do we simulate continuous time stochastic process like this?

By using thinned poisson processes

For example, if |(log π)′(x)| < c , simulate a Poisson process of rate
c (by simulating the exponential inter-arrival times). Then at each
poisson time, we accept as a direction change with probability
max(−(log π)′(x), 0)/c .

This makes the algorithm inexpensive to implement as we only
need to calculate (log π)′(x) occasionally.

There are many other details .... though the method is not so
complicated.
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Zig zag process for sampling the Cauchy distribution
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Multi-dimensional zig zag process

Multi-dimensional zig zag process: here we have a
multi-dimensional binary velocity, eg (1,−1,−1, 1, 1,−1, 1, 1).

Efficient sampling (currently for potentials with locally Lipschitz
gradients in multiple dimensions, but with obvious ways to extend).
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Subsampling
Motivation: intractable likelihood problems where calculating π at
any one fixed location is prohibitively expensive (given that very
many evaluations will be required to run the algorithm. For this
talk, concentrate on the Bayesian setting:

π(x) =
N∏
i=1

πi (x)

Eg we have N observations (but this method is not in any way
restricted to the independent data case).

Aim to be lazy and only use a small number of the terms in the
product.

For instance we might try pseudo-marginal MCMC (Beaumont,
2003, Andrieu and Roberts, 2009).But that would require an
unbiased non-negative estimate of π(x) with variance which is
stable as a function of N. But this is not possible for a product
without computing cost which is at least O(N).
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Subsampling within PDMP

PDMP for the exploration of high-dimensional distributions (such
as zig-zag or the ScaLE algorithm, Fearnhead, Johansen, Pollock
and Roberts, 2016) typically use log π(x) rather than π(x) and

log π(x) =
N∑
i=1

log πi (x)

for which there are well-behaved O(1) cost, O(1) variance (or
sometime a little worse). Can we use this?

Zig zag switching rate max
(

0,−j
∑N

i=1(log π)′i (x)
)
 O(N)

calculation at every switch
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Subsampling for zig-zag

Sub-sampling

• Determine global upper bound M for switching rate

• Simulate Exponential(M) random variable T

• Generate I ∼ discrete({1, . . . ,N})
• Accept the generated T as a “switching time” with

probability N max (0,−j(log πI )
′(Y (T ))) /M

Theorem: This works! (invariant distribution π)
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Subsampling + control variates

Crudely, for an O(1) update in state space:

• Without subsampling, O(N) computations required

• Using subsampling, gain factor N1/2  complexity O(N1/2)
per step

• Using control variates, gain additional factor N1/2  
complexity O(1) per step

Superefficiency We call an epoch the time taken to make one
function evaluation of the target density π. The control variate
subsampled zig-zag is superefficient in the sense that the effective
sample size from running the algorithm per epoch diverges.
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Subsampling + control variates – Logistic growth

(a) N = 100 (b) N = 100 (c) N = 100

(d) N = 10, 000 (e) N = 10, 000 (f) N = 10, 000

[Bierkens, Roberts, 2015, http://arxiv.org/abs/1509.00302]

[Bierkens, Fearnhead, Roberts, Ann Stat to appear]
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Effective Sample Size per epoch
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Summary of Zig-Zag

• PDMPs have many uses for simulation of stochastic processes
(even those very different from PDMPs) as well as steady
state simulation.

• Subsampling and control-variate tweaks greatly improve
efficiency in certain situations. PDMP are particularly
amenable to this.

• More work is needed on studying the theoretical and empirical
properties of these algorithms, and exploiting their flexibility.
(Though lots more I have not told you ...)

• Zigzag is a flexible and usually easy-to-implement method for
simulating from a target distribution.

• Can zigzag be a competitor to Hamiltonian MCMC?
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Quasi-stationary Monte Carlo

Traditional Markov chain Monte Carlo rests on the construction of
an ergodic Markov chain designed to have a prescribed stationary
distribution π.

Quasi-stationary Monte Carlo instead makes use of the conditional
distribution of an killed stochastic process conditioned on not
being killed.

This turns out to be a natural framework for subsampling without
approximation.
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Quasi-stationarity: boundary killing

Ant on a volcanic island undergoing Brownian motion, killed at τ∂
when it touches lava.

What can be said about P(Xt ∈ · |τ∂ > t) for large t?
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Quasi-stationarity: interior killing

Take a continuous-time Markov process on Rd

(Xt , t ≥ 0).

We then augment this process with an inhomogeneous Poisson
process:

τ∂ := inf

{
t ≥ 0 :

∫ t

0
κ(Xs)ds ≥ ξ

}
,

where ξ ∼ Exp(1), independent of X .

Here κ : R2 → [0,∞) is a locally bounded function, the killing rate.



Zig-zag Subsampling Quasi-stationary Monte Carlo methods

Quasi-stationarity: interior killing example

Take X to be a standard Brownian motion on R2, κ(y) = ‖y‖2.

What can be said about P(Xt ∈ · |τ∂ > t) for large t? Gaussian.
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Quasi-stationarity

Say a probability measure µ is quasi-stationary if for any t ≥ 0,

Pµ(Xt ∈ · |τ∂ > t) = µ(·).

Say µ is quasi-limiting if for each measurable set E

Px(Xt ∈ E |τ∂ > t)→ µ(E ).

Rich literature in probability theory; e.g. population dynamics, and
textbook of Collet et al (2013).

This actually arises quite naturally in computing:

τ∂ = {algorithm behaves very badly},

e.g. stack overflow, very slow runs, cf. user-impatience bias.



Zig-zag Subsampling Quasi-stationary Monte Carlo methods

Quasi-stationarity

Say a probability measure µ is quasi-stationary if for any t ≥ 0,

Pµ(Xt ∈ · |τ∂ > t) = µ(·).

Say µ is quasi-limiting if for each measurable set E

Px(Xt ∈ E |τ∂ > t)→ µ(E ).

Rich literature in probability theory; e.g. population dynamics, and
textbook of Collet et al (2013).

This actually arises quite naturally in computing:

τ∂ = {algorithm behaves very badly},

e.g. stack overflow, very slow runs, cf. user-impatience bias.



Zig-zag Subsampling Quasi-stationary Monte Carlo methods

Quasi-stationarity

Say a probability measure µ is quasi-stationary if for any t ≥ 0,

Pµ(Xt ∈ · |τ∂ > t) = µ(·).

Say µ is quasi-limiting if for each measurable set E

Px(Xt ∈ E |τ∂ > t)→ µ(E ).

Rich literature in probability theory; e.g. population dynamics, and
textbook of Collet et al (2013).

This actually arises quite naturally in computing:

τ∂ = {algorithm behaves very badly},

e.g. stack overflow, very slow runs, cf. user-impatience bias.



Zig-zag Subsampling Quasi-stationary Monte Carlo methods

Quasi-stationarity

Say a probability measure µ is quasi-stationary if for any t ≥ 0,

Pµ(Xt ∈ · |τ∂ > t) = µ(·).

Say µ is quasi-limiting if for each measurable set E

Px(Xt ∈ E |τ∂ > t)→ µ(E ).

Rich literature in probability theory; e.g. population dynamics, and
textbook of Collet et al (2013).

This actually arises quite naturally in computing:

τ∂ = {algorithm behaves very badly},

e.g. stack overflow, very slow runs, cf. user-impatience bias.



Zig-zag Subsampling Quasi-stationary Monte Carlo methods

Characterisation of quasi-stationarity distributions

Discrete time

• Transition matrix P.

• π is stationary if

πP = π.

• π quasi-stationary if

πP = λπ,

some 0 < λ < 1.

• Semigroup

πPn = λnπ.

Continuous time

• Rate matrix Q.

• π is stationary if

πQ = 0.

• π quasi-stationary if

πQ = −λπ,

some λ > 0.

• Semigroup

πPt = e−λtπ.

Theory of quasi-stationarity more delicate, so why bother ....
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Quasi-stationary Monte Carlo

Start with a diffusion, for simplicity assume X is Brownian motion.

At time t, kill X at rate κ(Xt).

Idea of quasi-stationary Monte Carlo: choose κ in such a way that
the quasi-limiting distribution coincides with the target distribution
π.

Need to take

κ(x) =
1

2

∆π(x)

π(x)
+ C

where ∆ denotes the Laplacian and C is an arbitrary constant
(which needs to be chosen so that κ is always non-negative.
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How to extract samples from π?

For MCMC it is obvious to just take values of the chain after a
while which should be close to samples from π.

It is clearly inefficient to take long runs of Brownian motion and
just keep the ones which have not been killed.

Instead we have two approaches

• The Scalable Langevin Exact Algorithm: ScaLE which
propagates a population of particles. Once one dies. it is
resurrected from the location of one of the other particles.

• ReScaLE which uses a single trajectory which on death
regenerates from a point along the trajectory to date.
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Some implementational comments about ScaLE

The algorithm is implemented via an SMC framework.

In practice, we don’t automatically kill particles and carry weighted
particles instead in a more traditional SMC way. This is more
efficient.

Crucial to efficiency is subsampling. Need tractability of f as well
as a thinned Poisson process approach. All of this is analogous to
the Zig-Zag set-up.

The underlying stochastic process is just Brownian motion.
Simulation of Brownian motion is complicated by the need to
simulate random variable such as BM’s first exit time of a suitable
hypercube. (Needed to ensure we can exactly implement the
thinned PP method.
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ScaLE

The key is that deciding on whether to kill a particle or not can be
done using subsamples of the data set of size 2, with no loss of
algorithmic efficiency.

For example a logistic regression example using control variates:

22 24 26 28 30 32 34

11
.0
20

11
.0
25

11
.0
30

11
.0
35

log2(n)

lo
g 2
(λ
nK
)



Zig-zag Subsampling Quasi-stationary Monte Carlo methods

Logistic regression example
Airline data set (all flights in US over an extended period). Binary
output of whether the flight was late.

49,665,450 individual records of the data set were accessed
(equivalent to roughly 0.0029 full data evaluations) for the
following output.
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Skewed distribution
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Summary of ScaLE properties

ScaLE has remarkable scaling properries for large data. BUT it
does require

1. smoothness of the likelihood;

2. posterior contraction

3. to get the best scaling with dimension, require to find at least
one point ”close” to a mode of π.

Current implementation (in R!) is fairly slow and only suitable for
fairly low dimensional parameter sets. But the scaling properties
can be clearly seen.
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Final comments

We have introduced two principled subsampling methods which
exhibit iterative super-efficiency.

Note that with highly heterogenous data (eg all the information
comes from a tiny fraction of the data) no method can be
super-efficient.

ScaLE is statistically identical to the algorithm which would carry
out no subsampling and fully the evaluate the target at each step.
Zig-Zag is not statistically identical and can converge slower with
subsampling.

Zig-Zag (and other PDMPS) are currently the more promising
method for higher-dimensional problems.

Continuous-time algorithms involve many new implementational
details and challenges. But these methods can often be more
robust than their continuous-time competitors.
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Final comment (continued)
Software:
https://github.com/mpoll/scale

RZigZag, see
https://diamweb.ewi.tudelft.nl/joris/pdmps.html

Current/future directions:

1. ReScaLE. While ScaLE uses a population approach (SMC) to
realise the quasi-stationary distribution, ReScaLE is a single
trajectory algorithm: rebirths come from the past trajectory
rather than the remaining population of particles. Compared
to ScaLE, ReScaLE is very fast, but has less robust
convergence.

2. Restore. This is a pure non-reversible MCM algorithm
invlolving rebirths together with local dynamics.
http://arxiv.org/abs/1910.05037

3. Theoretical underpinning for all these methods!
4. Generic software using automatic differentiation.
5. Applications in infectious disease epidemiology
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