Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels

Damir Filipović Paul Schneider

EPFL, Swiss Finance Institute, USI Lugano

Research Seminar WU Vienna, 19 March 2025

Overview

- Most asset pricing models build on conditional first two moments
- Finance millenium problem (Cochrane's 2011 address): "How to model conditional covariance as function of characteristics?"
- We provide a nonparametric consistent joint estimator of conditional mean and covariance for unbalanced panels as function of characteristics
- Satisfies asymptotic consistency and finite-sample guarantees
- Implies a conditional factor model representation
- Achieves maximal possible Sharpe ratio, i.e., "spans the stochastic discount factor" (Kozak and Nagel (2024))

Outline

- Conditional mean and covariance model
- 2 Joint estimation
- Consistency and Guarantees
- 4 Empirical study

Conditional mean and covariance functions

- Consider discrete time periods $t=0,1,\ldots$ (e.g., months)
- Over period [t, t+1] there are N_t assets with excess returns $x_{t+1,i}$
- ullet Asset i is characterized by **covariates** $z_{t,i}$ in some covariate space ${\mathcal Z}$ observable at t
- Goal: model conditional moments given information at t,

$$\mathbb{E}_{t}[x_{t+1,i}] = \mu(z_{t,i}),$$

$$\mathbb{E}_{t}[x_{t+1,i}x_{t+1,j}] = q(z_{t,i}, z_{t,j}),$$

by conditional moment functions $\mu: \mathcal{Z} \to \mathbb{R}$ and $q: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$

Challenge

Denote arrays

$$\mathbf{z}_{t+1} \coloneqq [\mathbf{z}_{t+1,1}, \dots, \mathbf{z}_{t+1,N_t}]^{\top} \in \mathbb{R}^{N_t}, \qquad \mathbf{z}_t \coloneqq [\mathbf{z}_{t,1}, \dots, \mathbf{z}_{t,N_t}]^{\top} \in \mathcal{Z}^{N_t}$$

and corresponding arrays of function values

$$\mu(\mathbf{z}_t) \coloneqq [\mu(\mathbf{z}_{t,i}) : 1 \le i \le N_t], \qquad q(\mathbf{z}_t, \mathbf{z}_t^\top) \coloneqq [q(\mathbf{z}_{t,i}, \mathbf{z}_{t,j}) : 1 \le i, j \le N_t]$$

• Challenge: find functions μ and q such that implied conditional covariance matrix

$$q(\mathbf{z}_t, \mathbf{z}_t^{\top}) - \mu(\mathbf{z}_t)\mu(\mathbf{z}_t)^{\top}$$
 is symmetric and positive semidefinite. (1)

- Property (1) implies that $q(\mathbf{z}_t, \mathbf{z}_t^{\top})$ is symmetric and positive semidefinite
- This is the defining property of a kernel function

Kernel functions and Schur complement

- Extended covariate spac $\mathcal{Z}_{\Delta} \coloneqq \mathcal{Z} \cup \{\Delta\}$ for external point $\Delta \notin \mathcal{Z}$
- ullet Assume $q:\mathcal{Z}_\Delta imes\mathcal{Z}_\Delta o\mathbb{R}$ is a kernel function such that $q(\Delta,\Delta)=1$
- Define $\mu(z) \coloneqq q(z, \Delta)$
- Then the implied covariance function

$$c(z,z') := q(z,z') - \mu(z)\mu(z')$$

is the Schur complement of q with respect to Δ and therefore a kernel function on $\mathcal{Z}_\Delta imes \mathcal{Z}_\Delta$

Problem boils down to specify q

Systemic and idiosyncratic components

- Decompose $q(z,z')=q^{\rm sy}(z,z')+q^{\rm id}(z,z')$ into sum of two kernel functions:
- Systematic component $q^{sy}(z, z')$ captures
 - conditional cross-sectional dependence, and
 - ightharpoonup risk premium (conditional mean), and hence structural condition $q^{\rm sy}(\Delta,\Delta)=1$
- ullet Idiosyncratic component $q^{\mathrm{id}}(z,z')=q^{\mathrm{id}}(z,z')1_{z=z'}$ is supported on the diagonal of $\mathcal{Z} imes\mathcal{Z}$

Moment kernel specification

- ullet Need: flexible nonparametric specification of moment kernel q on $\mathcal{Z}_\Delta imes \mathcal{Z}_\Delta$
- Approach: let $C = \ell^2$ be auxiliary Hilbert space, fix unit vector $p \in C$, i.e., $\langle p, p \rangle_C = 1$
- Any feature maps $h^{\mathrm{sy}}, h^{\mathrm{id}}: \mathcal{Z} \to \mathcal{C}$ define a desired kernel function on $\mathcal{Z}_{\Delta} \times \mathcal{Z}_{\Delta}$ by

$$q_h(z,z') \coloneqq \underbrace{\langle h^{\mathrm{sy}}(z) + p \mathbb{1}_{z=\Delta}, h^{\mathrm{sy}}(z') + p \mathbb{1}_{z'=\Delta} \rangle_{\mathcal{C}}}_{\text{systematic component } q_h^{\mathrm{sy}}(z,z')} + \underbrace{\|h^{\mathrm{id}}(z)\|_{\mathcal{C}}^2 \mathbb{1}_{z=z'}}_{\text{idiosyncratic component } q_h^{\mathrm{id}}(z,z')}$$

where we **extend** $h^{\tau}(\Delta) := 0$, for $\tau \in \{ sy, id \}$

This implies the conditional mean and covariance functions

$$\begin{split} \mu_h(z) &= \langle h^{\mathrm{sy}}(z), p \rangle_{\mathcal{C}}, \\ c_h(z, z') &= \langle h^{\mathrm{sy}}(z), h^{\mathrm{sy}}(z') \rangle_{\mathcal{C}} - \langle h^{\mathrm{sy}}(z), p \rangle_{\mathcal{C}} \langle h^{\mathrm{sy}}(z'), p \rangle_{\mathcal{C}} + \|h^{\mathrm{id}}(z)\|_{\mathcal{C}}^2 \, \mathbf{1}_{z=z'}. \end{split}$$

Outline

- Conditional mean and covariance model
- 2 Joint estimation
- 3 Consistency and Guarantees
- 4 Empirical study

Estimation problem

• Estimate h via matrix-valued regression

$$\begin{bmatrix} 1 & \mathbf{x}_{t+1}^{\top} \\ \mathbf{x}_{t+1} & \mathbf{x}_{t+1}\mathbf{x}_{t+1}^{\top} \end{bmatrix} = \begin{bmatrix} 1 & \langle p, h^{\mathrm{sy}}(\mathbf{z}_t) \rangle_{\mathcal{C}} \\ \langle h^{\mathrm{sy}}(\mathbf{z}_t), p \rangle_{\mathcal{C}} & \langle h^{\mathrm{sy}}(\mathbf{z}_t), h^{\mathrm{sy}}(\mathbf{z}_t) \rangle_{\mathcal{C}} \end{bmatrix} + \begin{bmatrix} 0 & \mathbf{0} \\ \mathbf{0} & \mathrm{diag}(\|h^{\mathrm{id}}(\mathbf{z}_t)\|_{\mathcal{C}}^2) \end{bmatrix} + \mathbf{E}_{t+1}$$
 with residual matrix $\mathbb{E}_t[\mathbf{E}_{t+1}] = 0$

- Denote data point $\xi_t \coloneqq (N_t, x_{t+1}, z_t)$ and weight function $w(N_t) \coloneqq 1/N_t$
- Leads to quadratic loss function for $h = (h^{sy}, h^{id})$,

$$\begin{split} \mathcal{L}(h,\xi_t) &\coloneqq w(N_t) \, \| \boldsymbol{E}_{t+1} \|_F^2 \\ &= 2 \underbrace{w(N_t) \, \| \boldsymbol{x}_{t+1} - \langle h^{\mathrm{sy}}(\boldsymbol{z}_t), \boldsymbol{p} \rangle_{\mathcal{C}} \|_2^2}_{\text{first moment error}} \\ &+ \underbrace{w(N_t) \, \left\| \boldsymbol{x}_{t+1} \boldsymbol{x}_{t+1}^\top - \langle h^{\mathrm{sy}}(\boldsymbol{z}_t), h^{\mathrm{sy}}(\boldsymbol{z}_t)^\top \rangle_{\mathcal{C}} - \mathrm{diag}(\| h^{\mathrm{id}}(\boldsymbol{z}_t) \|_{\mathcal{C}}^2) \right\|_F^2}, \\ & \underbrace{ \text{second moment error}}_{} \end{split}$$

Hypothesis space for $h = (h^{sy}, h^{id})$

- ullet Need: a hypothesis space for feature maps $h^{
 m sy}, h^{
 m id}: \mathcal{Z}
 ightarrow \mathcal{C}$
- Flexible choice: \mathcal{C} -valued reproducing kernel Hilbert spaces (RKHS) $\mathcal{H}^{\mathrm{sy}}$, $\mathcal{H}^{\mathrm{id}}$ of functions h^{sy} , h^{id} : $\mathcal{Z} \to \mathcal{C}$ with operator-valued reproducing kernels K^{sy} , K^{id} on $\mathcal{Z} \times \mathcal{Z}$
- Tractable choice: assume separable $K^{\mathrm{sy}}(z,z')=k^{\mathrm{sy}}(z,z')I_{\mathcal{C}},~K^{\mathrm{id}}(z,z')=k^{\mathrm{id}}(z,z')I_{\mathcal{C}}$ for scalar reproducing kernels $k^{\mathrm{sy}},k^{\mathrm{id}}$ of separable RKHS $\mathcal{G}^{\mathrm{sy}},\mathcal{G}^{\mathrm{id}}$ on \mathcal{Z}
- $\bullet \ \, \mathsf{Note} \colon \, \mathcal{H}^{\mathrm{sy}} \cong \mathcal{G}^{\mathrm{sy}} \otimes \mathcal{C}, \, \, \mathcal{H}^{\mathrm{id}} \cong \mathcal{G}^{\mathrm{id}} \otimes \mathcal{C} \, \, \mathsf{can} \, \, \mathsf{be} \, \, \mathsf{identified} \, \, \mathsf{with} \, \, \mathsf{tensor} \, \, \mathsf{products}$
- This is a fully flexible nonparametric setup

Non-convex kernel ridge regression

• Regularize loss function $\mathcal{L}(h, \xi_t)$ with parameters $\lambda^{\mathrm{sy}}, \lambda^{\mathrm{id}} > 0$,

$$\mathcal{R}(h, \xi_t) \coloneqq \mathcal{L}(h, \xi_t) + \underbrace{\lambda^{\mathrm{sy}} \|h^{\mathrm{sy}}\|_{\mathcal{H}^{\mathrm{sy}}}^2 + \lambda^{\mathrm{id}} \|h^{\mathrm{id}}\|_{\mathcal{H}^{\mathrm{id}}}^2}_{\text{regularization}}$$

Sample average: empirical loss minimization ⇒ kernel ridge regression problem

- ullet Problem (2) is not convex in $h=(h^{\mathrm{sy}},h^{\mathrm{id}})$, there exist infinitely many minimizers h
- However, we can characterize their structure explicitly:

Lemma 2.1 (Representer theorem).

Every minimizer of (2) is of the form $h^{\tau}(\cdot) = \sum_{t=0}^{T-1} \sum_{i=1}^{N_t} k^{\tau}(\cdot, z_{t,i}) \gamma_{t,i}^{\tau}$ for some $\gamma_{t,i}^{\tau} \in \mathcal{C}$, for both components $\tau \in \{\text{sy}, \text{id}\}$.

Low-rank approximation: feature learning

- **Problem**: full sample $\pmb{Z} := \begin{bmatrix} \pmb{z}_0 \\ \vdots \\ \pmb{z}_{T-1} \end{bmatrix} \in \mathcal{Z}^N$ for $N := \sum_{t=0}^{T-1} N_t$ may be too large
- ullet Nyström method selects subsample $\Pi^ au\subset\{1,\ldots,N\}$ of size $m^ au\leq N$ such that kernel gap

$$\operatorname{tr}\left(k^{\tau}(\boldsymbol{Z},\boldsymbol{Z}^{\top})-k^{\tau}(\boldsymbol{Z},\boldsymbol{Z}_{\Pi^{\tau}}^{\top})k^{\tau}(\boldsymbol{Z}_{\Pi^{\tau}},\boldsymbol{Z}_{\Pi^{\tau}}^{\top})^{-1}k^{\tau}(\boldsymbol{Z}_{\Pi^{\tau}},\boldsymbol{Z}^{\top})\right) \leq \epsilon_{\operatorname{tolerance}}$$

- Gives m^{τ} linearly independent feature maps $\phi^{\tau}(\cdot) \coloneqq [\phi_1^{\tau}(\cdot), \dots, \phi_{m^{\tau}}^{\tau}(\cdot)] \coloneqq k^{\tau}(\cdot, \mathbf{Z}_{\Pi^{\tau}}^{\top})$
- ullet Low-rank approximation: restrict to subspace of $\mathcal{H}^{ au}$ consisting of

$$h^ au(\cdot) = \sum_{i=1}^{m^ au} \phi_i^ au(\cdot) \gamma_i^ au \eqqcolon \phi^ au(\cdot) \gamma^ au$$

for coefficients $\boldsymbol{\gamma}^{\tau} \in \mathcal{C}^{m^{\tau}}$, ... for both components $\tau \in \{\mathrm{sy}, \mathrm{id}\}$

Reparametrization I

Reparametrize loss function $\mathcal{R}(h,\xi_t)$ in terms of coefficients $\pmb{\gamma}=(\pmb{\gamma}^{\mathrm{sy}},\pmb{\gamma}^{\mathrm{id}})\in\mathcal{C}^{m^{\mathrm{sy}}} imes\mathcal{C}^{m^{\mathrm{id}}}$

$$egin{aligned} \mathcal{R}(oldsymbol{\gamma}, \xi_t) \coloneqq w(oldsymbol{\mathcal{N}}_t) igg\| egin{aligned} 1 & oldsymbol{x}_{t+1}^{ op} \ oldsymbol{x}_{t+1} oldsymbol{x}_{t+1}^{ op} \end{bmatrix} - oldsymbol{\Psi}^{ ext{sy}}(oldsymbol{z}_t) oldsymbol{U}^{ ext{sy}}(oldsymbol{\gamma}^{ ext{sy}}) oldsymbol{\Psi}^{ ext{sy}}(oldsymbol{z}_t)^{ op} \ & + \lambda^{ ext{sy}} ext{tr}(oldsymbol{G}^{ ext{sy}} oldsymbol{U}^{ ext{sy}}(oldsymbol{\gamma}^{ ext{sy}})) + \lambda^{ ext{id}} ext{tr}(oldsymbol{G}^{ ext{id}} oldsymbol{U}^{ ext{id}}(oldsymbol{\gamma}^{ ext{id}})), \end{aligned}$$

for the matrices

$$egin{aligned} oldsymbol{U}^{ ext{sy}}(oldsymbol{\gamma}^{ ext{sy}}) &\coloneqq egin{bmatrix} 1 & \langle oldsymbol{
ho}, oldsymbol{\gamma}^{ ext{sy}}
angle_{\mathcal{C}} \end{bmatrix} \in \mathbb{S}_{+}^{oldsymbol{m}^{ ext{sy}}+1}, \quad oldsymbol{U}^{ ext{id}}(oldsymbol{\gamma}^{ ext{id}}) &\coloneqq \langle oldsymbol{\gamma}^{ ext{id}}, oldsymbol{\gamma}^{ ext{id}}
angle_{\mathcal{C}} \geq \mathbb{S}_{+}^{oldsymbol{m}^{ ext{id}}}, \ oldsymbol{\Psi}^{ ext{sy}}(oldsymbol{z}_{t}) &\coloneqq egin{bmatrix} oldsymbol{0} & oldsymbol{0}^{ ext{ry}} \\ oldsymbol{\phi}^{ ext{sy}}(oldsymbol{z}_{t}) \end{bmatrix} \in \mathbb{R}^{(N_{t}+1) imes (oldsymbol{m}^{ ext{sy}}+1)}, \quad oldsymbol{\Psi}^{ ext{id}}(oldsymbol{z}_{t}) &\coloneqq oldsymbol{\phi}^{ ext{id}}(oldsymbol{z}_{t}) \end{bmatrix} \in \mathbb{S}^{oldsymbol{m}^{ ext{rid}}}_{+}, \quad oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{\phi}^{ ext{id}}
angle_{\mathcal{C}} \in \mathbb{S}^{oldsymbol{m}^{ ext{id}}}_{+}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{\phi}^{ ext{id}}
angle_{\mathcal{C}} \in \mathbb{S}^{oldsymbol{m}^{ ext{id}}}_{+}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{\phi}^{ ext{id}}
angle_{\mathcal{C}} \in \mathbb{S}^{oldsymbol{m}^{ ext{id}}}_{+}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{\phi}^{ ext{id}}
angle_{\mathcal{C}} \in \mathbb{S}^{oldsymbol{m}^{ ext{id}}}_{+}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{\phi}^{ ext{id}}
angle_{\mathcal{C}} \in \mathbb{S}^{oldsymbol{m}^{ ext{id}}}_{+}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{\phi}^{ ext{id}} \rangle_{\mathcal{C}} \in \mathbb{S}^{oldsymbol{m}^{ ext{id}}}_{+}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{\phi}^{ ext{id}} \rangle_{\mathcal{C}} \in \mathbb{S}^{oldsymbol{m}^{ ext{id}}}_{+}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{\phi}^{ ext{id}} \rangle_{\mathcal{C}} \in \mathbb{S}^{oldsymbol{m}^{ ext{id}}}_{+}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{\phi}^{ ext{id}}, oldsymbol{G}^{ ext{id}}, \ oldsymbol{G}^{ ext{id}}, \ oldsymbol{G}^{ ext{id}} &\coloneqq \langle oldsymbol{G}^{ ext{id}}, oldsymbol{G}^{ ext{id}}, \ oldsymbol{G}^{ ext{id}}, \ oldsymbol{G}^{ ext{id}}, \ oldsymbol{G}^{ ext{id}$$

Reparametrization II gives convex problem

- $\bullet \ \, \text{Define convex feasible set} \,\, \mathcal{D} \coloneqq \left\{ \textbf{\textit{U}} = (\textbf{\textit{U}}^{\text{sy}}, \textbf{\textit{U}}^{\text{id}}) \in \mathbb{S}_{+}^{\textit{\textit{m}}^{\text{sy}}+1} \times \mathbb{S}_{+}^{\textit{\textit{m}}^{\text{id}}} : \textbf{\textit{U}}_{11}^{\text{sy}} = 1 \right\}$
- Lemma: $(\gamma^{\mathrm{sy}}, \gamma^{\mathrm{id}}) \mapsto (\boldsymbol{U}^{\mathrm{sy}}(\gamma^{\mathrm{sy}}), \boldsymbol{U}^{\mathrm{id}}(\gamma^{\mathrm{id}})) : \mathcal{C}^{m^{\mathrm{sy}}} \times \mathcal{C}^{m^{\mathrm{id}}} \to \mathcal{D}$ is surjective
- \Rightarrow Can reparametrize: gives ${\sf convex}$ (quadratic) loss function in terms of ${m U} \in {\mathcal D}$

$$egin{aligned} \mathcal{R}(oldsymbol{U}, \xi_t) \coloneqq w(oldsymbol{N}_t) igg\| egin{aligned} 1 & oldsymbol{x}_{t+1}^{ op} & oldsymbol{x}_{t+1}^{ op} - oldsymbol{\Psi}^{ ext{sy}}(oldsymbol{z}_t) oldsymbol{U}^{ ext{sy}} oldsymbol{\Psi}^{ ext{sy}}(oldsymbol{z}_t)^{ op} \ & - \operatorname{\mathsf{Diag}}(oldsymbol{\Psi}^{ ext{id}}(oldsymbol{z}_t) oldsymbol{U}^{ ext{id}} oldsymbol{\Psi}^{ ext{id}}(oldsymbol{z}_t)^{ op}) igg\|_F^2 \ & + \lambda^{ ext{sy}} \mathrm{tr}(oldsymbol{G}^{ ext{sy}} oldsymbol{U}^{ ext{sy}}) + \lambda^{ ext{id}} \mathrm{tr}(oldsymbol{G}^{ ext{id}} oldsymbol{U}^{ ext{id}}) \end{aligned}$$

ullet Estimation boils down to constrained convex optimization problem over $oldsymbol{U} \in \mathcal{D}$

Moment kernel estimator in reparametrization

ullet Estimator of moment kernel in terms of $m{U} = (m{U}^{\mathrm{sy}}, m{U}^{\mathrm{id}}) \in \mathcal{D}$ given by

$$q_{\boldsymbol{U}}(z,z') = \begin{bmatrix} 1_{z=\Delta} & \phi^{\mathrm{sy}}(z) \end{bmatrix} \boldsymbol{U}^{\mathrm{sy}} \begin{bmatrix} 1_{z'=\Delta} & \phi^{\mathrm{sy}}(z') \end{bmatrix}^{\top} + \phi^{\mathrm{id}}(z) \boldsymbol{U}^{\mathrm{id}} \phi^{\mathrm{id}}(z')^{\top} 1_{z=z'}.$$

This implies the conditional mean and covariance functions

$$\mu_{\boldsymbol{U}}(z) = \phi^{\mathrm{sy}}(z)\boldsymbol{b},$$

$$c_{\boldsymbol{U}}(z,z') = \phi^{\mathrm{sy}}(z)(\boldsymbol{V} - \boldsymbol{b}\boldsymbol{b}^{\top})\phi^{\mathrm{sy}}(z')^{\top} + \phi^{\mathrm{id}}(z)\boldsymbol{U}^{\mathrm{id}}\phi^{\mathrm{id}}(z')^{\top}1_{z=z'},$$

for
$$\begin{bmatrix} 1 & m{b}^{ op} \ m{b} & m{V} \end{bmatrix} \coloneqq m{U}^{ ext{sy}}$$

Resulting conditional mean-covariance estimator

ullet Estimator of conditional mean and covariance matrix in terms of $\begin{bmatrix} 1 & m{b}^{ op} \\ m{b} & m{V} \end{bmatrix} \coloneqq m{U}^{\mathrm{sy}}$ given by

$$egin{aligned} oldsymbol{\mu}_t &= \phi^{ ext{sy}}(oldsymbol{z}_t)oldsymbol{b}, \ oldsymbol{\Sigma}_t &= \underbrace{\phi^{ ext{sy}}(oldsymbol{z}_t)ig(oldsymbol{V} - oldsymbol{b}oldsymbol{b}^ opig)\phi^{ ext{sy}}(oldsymbol{z}_t)^ op}_{=:oldsymbol{\Sigma}_t^{ ext{id}}} + \underbrace{oldsymbol{ ext{Diag}}(\phi^{ ext{id}}(oldsymbol{z}_t)oldsymbol{U}^{ ext{id}}\phi^{ ext{id}}(oldsymbol{z}_t)^ opig)}_{=:oldsymbol{\Sigma}_t^{ ext{id}}} \end{aligned}$$

 \Rightarrow No-arbitrage $\mu_t \in \mathsf{Im}(\Sigma_t)$ holds if either $m{V} - m{b}m{b}^ op$ or Σ_t^{id} is invertible

Example (Isotropic idiosyncratic specification).

Dimension $m^{\mathrm{id}}=1$, constant feature map $\phi^{\mathrm{id}}(\cdot)=\phi_1^{\mathrm{id}}(\cdot)\coloneqq 1$, and $\boldsymbol{U}^{\mathrm{id}}=u^{\mathrm{id}}\in[0,\infty)$. The idiosyncratic component becomes isotropic $\boldsymbol{\Sigma}_t^{\mathrm{id}}=u^{\mathrm{id}}\boldsymbol{I}_{N_t}$.

Spanning factor model representation

Theorem.

Assume Σ_t^{id} is invertible. Then the m^{sy} (GLS) factor portfolios

$$extbf{\emph{f}}_{t+1} \coloneqq ig((oldsymbol{\Sigma}_t^{ ext{id}})^{-1/2} oldsymbol{\phi}^{ ext{sy}}(oldsymbol{z}_t)ig)^+ ig(oldsymbol{\Sigma}_t^{ ext{id}}ig)^{-1/2} oldsymbol{\emph{x}}_{t+1}$$

are conditionally uncorrelated with the residuals $\epsilon_{t+1} \coloneqq \mathbf{x}_{t+1} - \phi^{\mathrm{sy}}(\mathbf{z}_t) \mathbf{f}_{t+1}$, i.e.,

$$\mathbf{x}_{t+1} = \boldsymbol{\phi}^{\mathrm{sy}}(\mathbf{z}_t) \mathbf{f}_{t+1} + \boldsymbol{\epsilon}_{t+1},$$

and span the conditionally mean-variance efficient (cMVE) portfolio with weights $\Sigma_t^{-1}\mu_t$.

Example (Isotropic idiosyncratic specification).

In this case, $\mathbf{f}_{t+1} = \phi^{\mathrm{sy}}(\mathbf{z}_t)^+ \mathbf{x}_{t+1}$ are simply the OLS factors.

Outline

- Conditional mean and covariance model
- 2 Joint estimation
- Consistency and Guarantees
- 4 Empirical study

Vectorization

- Assume sample $\xi_t = (N_t, \pmb{x}_{t+1}, \pmb{z}_t) \sim \xi = (N, \pmb{x}, \pmb{z})$ is i.i.d. for $t = 0, 1, \ldots, T-1$
- $m{ullet}$ Vectorize parameter $m{u}\coloneqq\begin{bmatrix}\operatorname{vech}(m{U}^{\mathrm{sy}})\\\operatorname{vech}(m{U}^{\mathrm{id}})\end{bmatrix}$ and feasbible set $\mathcal{U}\coloneqq\operatorname{vech}\mathcal{D}$
- ullet Can express quadratic loss function in terms of $oldsymbol{u} \in \mathcal{U}$

$$\boxed{\mathcal{R}(\boldsymbol{u},\xi) \coloneqq \frac{1}{2}\boldsymbol{u}^{\top}\boldsymbol{A}(\xi)\boldsymbol{u} + \boldsymbol{b}(\xi)^{\top}\boldsymbol{u} + c(\xi)}$$

- Denote population loss $\mathcal{E}(u) \coloneqq \mathbb{E}[\mathcal{R}(u,\xi)] = \frac{1}{2}u^{\top}Au + b^{\top}u + c$
- Denote empirical (sample average) loss $\mathcal{R}_{\mathcal{T}}(\textbf{\textit{u}}) \coloneqq \frac{1}{T} \sum_{t=0}^{T-1} \mathcal{R}(\textbf{\textit{u}}, \xi_t)$
- How do empirical minimizers of $\mathcal{R}_{\mathcal{T}}(\boldsymbol{u})$ compare to population minimizer of $\mathcal{E}(\boldsymbol{u})$?

Consistency

• Assume that the following moments are finite

$$\mathbb{E}[w(N)\|\phi^{\text{sy}}(z)\|_{F}^{4}], \quad \mathbb{E}[w(N)\|\phi^{\text{id}}(z)\|_{F}^{4}], \quad \mathbb{E}[w(N)\|x\|_{2}^{4}] < \infty. \tag{3}$$

Theorem (Consistency).

Assume that \mathbf{A} is non-singular, so that $\mathcal E$ is strictly convex and there exists a unique minimizer $\mathbf{u}^* \coloneqq \arg\min_{\mathbf{u} \in \mathcal U} \mathcal E(\mathbf{u})$. Then any sequence of minimizers $\mathbf{u}_T^* \in \arg\min_{\mathbf{u} \in \mathcal U} \mathcal R_T(\mathbf{u})$ converges, $\mathbf{u}_T^* \to \mathbf{u}^*$ as $T \to \infty$, with probability 1.

Mean squared error bound

• A function $f(\mathbf{u})$ is α -strongly convex if $f(\mathbf{u}) - \frac{\alpha}{2} ||\mathbf{u}||_2^2$ is convex.

Theorem (Mean squared error bound).

Assume further that $\mathcal{R}(\mathbf{u}, \xi)$ is α -strongly convex in \mathbf{u} for \mathbb{P} -a.e. ξ , for some $\alpha > 0$, and

$$\mathbb{E}[\|(\mathbf{A}(\xi) - \mathbf{A})\mathbf{u}^* + \mathbf{b}(\xi) - \mathbf{b}\|_2^2] \le \sigma^2, \tag{4}$$

for some $\sigma > 0$. Then \mathcal{E} and \mathcal{R}_T are α -strongly convex, so that the minimizers $\boldsymbol{u}_T^* = \arg\min_{\boldsymbol{u} \in \mathcal{U}} \mathcal{R}_T(\boldsymbol{u})$ are unique, and

$$\mathbb{E}[\|\boldsymbol{u}_T^* - \boldsymbol{u}^*\|_2^2] \le \sigma^2/(\alpha^2 T).$$

Finite-sample guarantees

Theorem (Finite-sample guarantees).

Assume further that

$$\mathbb{E}[\exp(\tau^{-2}\|(\mathbf{A}(\xi) - \mathbf{A})\mathbf{u}^* + \mathbf{b}(\xi) - \mathbf{b}\|_2^2)] \le \exp(1), \tag{5}$$

for some $\tau > 0$. Then for all $\epsilon > 0$, $\mathbb{P}[\|\mathbf{u}_T^* - \mathbf{u}^*\|_2 \ge \epsilon] \le 2 \exp(-\tau^{-2} T \epsilon^2 \alpha^2/3)$. This can equivalently be expressed as: for any $\delta \in (0,1)$, with sample probability of at least $1 - \delta$, it holds that

$$\|\boldsymbol{u}_T^* - \boldsymbol{u}^*\|_2 \leq \sqrt{\log(2/\delta)} \sqrt{3}\tau/(\alpha\sqrt{T}).$$

- Condition (5) implies (4) for $\sigma^2 = \tau^2$.
- A sufficient condition for (5) is that ϕ^{sy} and ϕ^{id} are uniformly bounded on \mathcal{Z} , and individual returns x_i and $N^2w(N)$ are uniformly bounded, \mathbb{P} -a.s.

Outline

- Conditional mean and covariance model
- 2 Joint estimation
- 3 Consistency and Guarantees
- 4 Empirical study

Data

- Sample period 1962–2021
- Returns from CRSP for firms in NYSE, AMEX, and NASDAQ
- Macroeconomic predictors from Welch and Goyal (2008)
- Updated sample from Gu, Kelly, Xiu (2020)
- In total over 100 characteristics/macro factors
- Over 6000 firms on average per month
- Rolling out-of-sample (OOS) testing: training sample 96 months + validation sample 1 month + test sample 1 month
- Plot expanding or rolling 24-month averages

Specification and benchmarking

- **Specification**: cosine kernel $k^{cos}(z, z') = \frac{\langle z, z' \rangle_2}{\|z\|_2 \|z'\|_2}$
- Number of factors m = 5, 10, 20, 40
- Statistical scoring rule Dawid and Sebastiani (1999) to jointly benchmark first and second moments

$$\mathcal{S}_c(\pmb{x},\pmb{\mu},\pmb{\Sigma}) \coloneqq \log \det \pmb{\Sigma} + (\pmb{x}-\pmb{\mu})^{ op} \pmb{\Sigma}^{-1} (\pmb{x}-\pmb{\mu})$$

- Validation of hyperparameters by minimizing scoring rule
- Benchmark: purely idiosyncratic model $\mu_t^{\rm bm} = \mathbf{0}$ and $\Sigma_t^{\rm bm} = \sigma_{\rm bm}^2 \mathbf{I}_{N_t}$ estimated by minimizing loss function: $\sigma_{\rm bm}^2 = \frac{\sum_{t=0}^{T-1} w(N_t) \|\mathbf{x}_{t+1}\|_2^2}{\sum_{t=0}^{T-1} w(N_t) N_t}$
- Statistical benchmarking by rolling difference (T t = 24 months)

$$\frac{1}{T-t}\sum_{s=t}^{T-1}\left(\mathcal{S}_c(\pmb{x}_{s+1},\pmb{0},\sigma_{\mathsf{bm}}^2\pmb{I}_{N_s})-\mathcal{S}_c(\pmb{x}_{s+1},\pmb{\mu}_s,\pmb{\Sigma}_s)\right)$$

OOS scoring rule

• Scoring difference $\frac{1}{T-t}\sum_{s=t}^{T-1}\left(\mathcal{S}_c(\mathbf{x}_{s+1},\mathbf{0},\sigma_{bm}^2\mathbf{I}_{N_s})-\mathcal{S}_c(\mathbf{x}_{s+1},\boldsymbol{\mu}_s,\boldsymbol{\Sigma}_s)\right)$

• Significant outperformance during **major market crashes** (shaded areas): 1987 Crash, Dot-Com Bubble, Global Financial Crisis, COVID-19 Pandemic

OOS first moment prediction

$$R_{t,T,OOS}^2 := 1 - \frac{\sum_{s=t}^{T-1} w(N_s) \|\mathbf{x}_{s+1} - \phi^{sy}(\mathbf{z}_s) \mathbf{b}\|_2^2}{\sum_{s=t}^{T-1} w(N_s) \|\mathbf{x}_{s+1}\|_2^2},$$

• Left panel predictive rolling. Right panel expanding

OOS second moment prediction

$$R_{t,T,OOS}^{2,2} := 1 - \frac{\sum_{s=t}^{T-1} w(N_s) \| \mathbf{x}_{s+1} \mathbf{x}_{s+1}^{\top} - \phi^{\text{sy}}(\mathbf{z}_s) \mathbf{V} \phi^{\text{sy}}(\mathbf{z}_s)^{\top} - u^{\text{id}} \mathbf{I}_{N_s} \|_F^2}{\sum_{s=t}^{T-1} w(N_s) \| \mathbf{x}_{s+1} \mathbf{x}_{s+1}^{\top} - \sigma_{\text{bm}}^2 \mathbf{I}_{N_s} \|_F^2}$$

• Left panel rolling. Right panel expanding. Outperforms during major market crashes

OOS realized and predicted explained variance by factors

- Left panel: total $R_{t,T,\mathsf{OOS}}^{2,f} \coloneqq 1 \frac{1}{T-t} \sum_{s=t}^{T-1} \frac{\|\mathbf{x}_{s+1} \phi^{\mathrm{sy}}(\mathbf{z}_s) \mathbf{f}_{s+1}\|_2^2}{\|\mathbf{x}_{s+1}\|_2^2}$
- Right panel: factor-explained variance $\frac{\operatorname{tr}(\phi^{\operatorname{sy}}(\mathbf{z}_t)\operatorname{Cov}_t[\mathbf{f}_{t+1}]\phi^{\operatorname{sy}}(\mathbf{z}_t)^\top)}{\operatorname{tr}\Sigma_t}$
- Increased factor-explained variance (dependence) during major market crases.
- Idiosyncratic risk explains more than 75% of variance on average

OOS realized and predicted Sharpe ratio rolling and expanding

- ullet Realized Sharpe ratio of cMVE portfolio $oldsymbol{\Sigma}_t^{-1} \mu_t$ vs. $1/N_t$ portfolio
- Left panel: predicted maximal Sharpe ratio.
- Middle panel: realized Sharpe ratio rolling. Right panel: realized Sharpe ratio expanding

Conclusion and Outlook

- Novel nonparametric joint estimator of conditional mean and covariance for (possibly large) unbalanced panels
- Based on moment kernel, given as solution to convex semidefinite problem
- Consistency: estimated covariance matrix is positive semidefinite
- Gives direct estimate of conditional mean-variance efficient portfolio and max Sharpe ratio
- Asymptotic consistency and finite-sample guarantees of empirical estimator
- Simulation study confirms findings
- Further research: higher-order moments

References I

Dawid, A. P. and Sebastiani, P. (1999). Coherent dispersion criteria for optimal experimental design. The Annals of Statistics, 27(1):65-81.

Kozak, S. and Nagel, S. (2024). When do cross-sectional asset pricing factors span the stochastic discount factor? Working Paper 31275, National Bureau of Economic Research.