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Overview

Most asset pricing models build on conditional first two moments

e Finance millenium problem (Cochrane’s 2011 address): “How to model conditional
covariance as function of characteristics?”

@ We provide a nonparametric consistent joint estimator of conditional mean and covariance
for unbalanced panels as function of characteristics

Satisfies asymptotic consistency and finite-sample guarantees

Implies a conditional factor model representation

Achieves maximal possible Sharpe ratio, i.e., “spans the stochastic discount factor” (Kozak
and Nagel (2024))
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@ Conditional mean and covariance model
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Conditional mean and covariance functions

o Consider discrete time periods t =0,1,... (e.g., months)
@ Over period [t, t + 1] there are N, assets with excess returns x;;1,;
@ Asset i is characterized by covariates z; ; in some covariate space Z observable at t

@ Goal: model conditional moments given information at t,

]Et[xt+1,i] = ,U(ZtJ),
Et[xer1ixer1] = (22, 2t),

by conditional moment functions ;t: Z -Randg: Z2x Z >R
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Challenge

@ Denote arrays
Xe+1 = [Xe411,--- ,xt+17Nt]T e RN 7z = [z1,..., tht]T e zN
and corresponding arrays of function values
wze) = lzed) 1< i< N, qlzenz]) = [alzei,20) 1< . < N
e Challenge: find functions 1 and g such that implied conditional covariance matrix
q(z:, 2" ) — p(z:)p(z:) " is symmetric and positive semidefinite. (1)

o Property (1) implies that g(z;, z,') is symmetric and positive semidefinite

@ This is the defining property of a kernel function
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Kernel functions and Schur complement

Extended covariate spac Zp = Z U {A} for external point A ¢ Z

Assume q : Zp X Zp — R is a kernel function such that g(A,A) =1

Define u(z) = q(z, A)
@ Then the implied covariance function
c(z,7) = q(z,2") — p(2)p(2)

is the Schur complement of g with respect to A and therefore a kernel function on Za x Za

Problem boils down to specify g
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Systemic and idiosyncratic components

o Decompose q(z,2') = q¥(z,2') + q'4(z, 2) into sum of two kernel functions:
e Systematic component ¢*¥(z, z') captures

» conditional cross-sectional dependence, and

» risk premium (conditional mean), and hence structural condition ¢ (A,A) =1

e ldiosyncratic component ¢'4(z, z') = ¢'4(z, z/)1,—,/ is supported on the diagonal of Z x Z
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Moment kernel specification

o Need: flexible nonparametric specification of moment kernel g on Zp X Za
o Approach: let C = /2 be auxiliary Hilbert space, fix unit vector p € C, i.e., (p,p)c =1

o Any feature maps h*, hid . Z — C define a desired kernel function on Za x Za by

an(z,2') = (B¥(2) + plo=n, h¥(Z') + plr=a)c + 15 (2)]3 1=z
—_———
systematic component q;” (z,2’) idiosyncratic component gid(z,z’)

where we extend h"(A) =0, for 7 € {sy,id}

@ This implies the conditional mean and covariance functions

un(z) = (K (2), ple.
ch(z.2) = (" (2), K (2))e — (F(2). phe (b (2). phe + 1H4(2) 3 Lo
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© Joint estimation
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Estimation problem

@ Estimate h via matrix-valued regression

1 X, _ 1 (p, Y (z:)) 0 0
[Xt+1 Xr+1211} - [(hsy(zt)ymc <hsy(zt),hsy(2f)>0] i [O diag([| () 2)]  F+?

with residual matrix E;[E; 1] =0
e Denote data point & = (N, x¢41, 2:) and weight function w(N;) = 1/N;

o Leads to quadratic loss function for h = (h%, h'),

L(h, &) = w(Ne) || Ecs17

= 2w(Ne) | xe+1 — (B (22), p)ell3

first moment error

xerrxdy — (0 (20), 17 (22) ) — diag(|(2:) 2)]

+ w(N¢)

2
=

N~
second moment error
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Hypothesis space for h = (h%, h'4)

Need: a hypothesis space for feature maps h%, h'd : Z — C

Flexible choice: C-valued reproducing kernel Hilbert spaces (RKHS) H%, Hi4 of
functions h%, ' : Z — C with operator-valued reproducing kernels K%, K'd on Z x Z

o Tractable choice: assume separable K%Y (z,z') = k% (z,2')le, K'(z,2') = k'd(z,2")I¢ for
scalar reproducing kernels k%Y, k4 of separable RKHS G%Y,G'd on Z

Note: HY =2 G% ® C, H4 = G4 @ C can be identified with tensor products

@ This is a fully flexible nonparametric setup
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Non-convex kernel ridge regression

o Regularize loss function £(h, &) with parameters A%, \id > 0,

R(h,&) = L(h, &) + AV [[h¥ 3oy + N 0130

Vv
regularization

@ Sample average: empirical loss minimization = kernel ridge regression problem

minimize, } 3212 R(h &) )

@ Problem (2) is not convex in h = (h%, h'?), there exist infinitely many minimizers h
@ However, we can characterize their structure explicitly:
Lemma 2.1 (Representer theorem).

Every minimizer of (2) is of the form h™(-) = tT:_Ol Z,N:tl K™ (:, zt,i)v1,; for some v, € C, for
both components T € {sy,id}.
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Low-rank approximation: feature learning

20
@ Problem: full sample Z = : € ZN for N :== ZZ—:_OI N; may be too large
ZT-1
o Nystrom method selects subsample N C {1,..., N} of size m™ < N such that kernel gap

tr (kT(zv ZT) - kT(Z7 zl:lr‘f)kT(Zl'lfy Zl:lr‘r)_lkT(Zl'l"a ZT)) < €tolerance

o Gives m" linearly independent feature maps ¢ (-) = [¢](-),..., 9% ()] = k7 (-, Z;-)
o Low-rank approximation: restrict to subspace of H” consisting of
() =X of (N = &7 ()
for coefficients v~ € C™", ... for both components 7 € {sy,id}
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Reparametrization |
Reparametrize loss function R(h, &;) in terms of coefficients v = (%, ~v4) € ¢™ x C™

id

R(7,&t) = w(Ny)

1 Xii1 :| v T
T — U (2, )UY ")’S W (z
|:Xt+1 Xt+1Xp 11 ( t) ( ) ( t)

2
- Diag(q’id(zt) Uid(’Yid)‘I’id(zt)T)

F
+ AVt (G UY () + )\idtr(GidUid(,Yid))’
for the matrices

1 T ms id /i id _idT mid
Usy(,.ySY) — [(p »YSY>C <<P Y o § :| c SJr Y+1’ Ud("}’ d) — <"}’d,’)’d >C e S+ ’
1 o' sy : o’ id
\IlSY — c R(Nt—i-l)x(m —‘r].), ‘IJld — |: . :| e R(Nt+1)><m ,
@ =]y go(e) ()= | g()
S 0 OT m° i id T i
6= 3 gy | €57 6= @ g e T
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Reparametrization Il gives convex problem
@ Define convex feasible set D = {U — (U, U9) e ST s U = 1}
o Lemma: (7%, ~41) = (UY (™), U'd(5'1)) : ¢™ x ™" — D is surjective

= Can reparametrize: gives convex (quadratic) loss function in terms of U € D

R(U, &) = w(Ny)

1 T

[x xt+1|_ ] . \Ilsy(zt)Usy\Ilsy(Zt)T
t+1  Xe+1Xpyq

2

— Diag(¥'Y(z,) U ¥ (2,)7)

F
+ AV tr(GY UY) 4 Ndtr(GUY)

@ Estimation boils down to constrained convex optimization problem over U € D
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Moment kernel estimator in reparametrization

o Estimator of moment kernel in terms of U = (U%, U'4) € D given by

qU(Zazl) = [1Z:A ¢sy(z)] u» [12’:A ¢Sy(zl)]—r + d)id(z) Uid¢id(zl)le:z’-

@ This implies the conditional mean and covariance functions

pu(z) = 9™ (2)b,
cu(z,2) = ¥ (2)(V — bb) 9™ ()" + ¢ (2) U9 (2) " Lo=rr,

-
for [1 b ] = U

b Vv
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Resulting conditional mean-covariance estimator
. . . . 1 b' .
@ Estimator of conditional mean and covariance matrix in terms of b vI= U given by
pe = ¢ (zt)b,
3 = ¢ (2:)(V — bb")$¥(2:)" + Diag(¢'!(z:) U9 (z) ")

Vv TV
.§ S —.yid
=% =i

= No-arbitrage p;: € Im(3;) holds if either V — bb" or Zid is invertible

Example (Isotropic idiosyncratic specification).

Dimension m'd = 1, constant feature map ¢'4(-) = ¢id(-) := 1, and U'¥ = u'd € [0,00). The
idiosyncratic component becomes isotropic $i9 = ' Iy, .
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Spanning factor model representation

Theorem.
Assume 39 js invertible. Then the m® (GLS) factor portfolios

v = (BF) 7267 (20)) " () Pxe
are conditionally uncorrelated with the residuals €:11 ‘= X¢+1 — ¢ (2:)Fit1, i€,

Xi4+1 = ¢Sy(zt)ft+1 + €t11,

and span the conditionally mean-variance efficient (cMVE) portfolio with weights X7 " pu;.

Example (Isotropic idiosyncratic specification).

In this case, fi11 = ¢ (z:)" x¢41 are simply the OLS factors.
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© Consistency and Guarantees
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Vectorization

Assume sample & = (N¢, Xer1,2:) ~ & = (N, x,z) isiid. fort =0,1,..., T —1

vech(U%)
vech(U'4)

Vectorize parameter u = [ } and feasbible set U := vech D

@ Can express quadratic loss function in terms of u € U
1
R(w,€) = Su' A(&)u + b(&) u + c(¢)

Denote population loss &(u) = E[R(u,£)] = u"Au+bTu+c
o Denote empirical (sample average) loss R(u) = + tT;OI R(u, &)

e How do empirical minimizers of R (u) compare to population minimizer of £(u)?
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Consistency

@ Assume that the following moments are finite
E[w(N)[¢¥ (2)[F],  E[w(N)[¢(2)F], E[w(N)]x]3] < co. (3)

Theorem (Consistency).

Assume that A is non-singular, so that £ is strictly convex and there exists a unique minimizer

u* ;= argmin o, E(u). Then any sequence of minimizers u% € argmin ,;, R7(u) converges,
ur — u* as T — oo, with probability 1.
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Mean squared error bound

e A function f(u) is a-strongly convex if f(u) — $||ul|3 is convex.

Theorem (Mean squared error bound).

Assume further that R(u, &) is a-strongly convex in u for P-a.e. £, for some a > 0, and
E[|[(A¢) — A)u* + b(¢) — b[3] < o2, (4)

for some o > 0. Then £ and Rt are a-strongly convex, so that the minimizers
u3 = argmin ,, R7(u) are unique, and

E[|uy — u’||3] < 0%/(a?T).
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Finite-sample guarantees

Theorem (Finite-sample guarantees).

Assume further that
Elexp(r2[|(A(¢) — A)u* + b(€) — b[3)] < exp(1), (5)

for some 7 > 0. Then for all e > 0, P[||u% — u*||2 > €] < 2exp(—72Te?a?/3). This can
equivalently be expressed as: for any ¢ € (0,1), with sample probability of at least 1 — 9, it

holds that
o — u*||2 < \/log(2/6)V37/(aV/T).

e Condition (5) implies (4) for 02 = 72.

o A sufficient condition for (5) is that ¢® and ¢'@ are uniformly bounded on Z, and individual
returns x; and N2w(N) are uniformly bounded, P-a.s.
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@ Empirical study
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Data

@ Sample period 1962-2021

@ Returns from CRSP for firms in NYSE, AMEX, and NASDAQ
@ Macroeconomic predictors from Welch and Goyal (2008)

e Updated sample from Gu, Kelly, Xiu (2020)

@ In total over 100 characteristics/macro factors

@ Over 6000 firms on average per month

@ Rolling out-of-sample (OOS) testing: training sample 96 months + validation sample 1
month + test sample 1 month

@ Plot expanding or rolling 24-month averages
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Specification and benchmarking

(2,2')>

° e . : . cos 1y — 2
Specification: cosine kernel k“*(z, 2’) EREE

@ Number of factors m =5, 10, 20, 40

Statistical scoring rule Dawid and Sebastiani (1999) to jointly benchmark first and second
moments

Sc(x, 1, E) = logdet = + (x — p) =71 (x — p)

Validation of hyperparameters by minimizing scoring rule

Benchmark: purely idiosyncratic model ™ = 0 and Xb™ = agm Iy, estimated by

T-1
2 g wilNe)llxeqa I3

minimizing loss function: op = ST w(NN:

Statistical benchmarking by rolling difference (T — t = 24 months)
% ZZ—:_tl (Sc(xs+1a 0, O't2,m INs) - Sc(strla Hs, 2]s))
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OOS scoring rule

@ Scoring difference % 257—:_151 (Sc(Xs+1,0,02,,In,) — Sc(Xs41, ps, X))

2000
1500
1000

500

1980 2000 2020

e Significant outperformance during major market crashes (shaded areas): 1987 Crash,
Dot-Com Bubble, Global Financial Crisis, COVID-19 Pandemic
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OOS first moment prediction

S wNG)[Ixs41 — ¢ (25)bl3
257;1 W(N5)||x5+1||§

o Left panel predictive rolling. Right panel expanding

2 _
Rf 1.00s =

0.03 0.010
0.02
0.005
o1 label label
— m=5 — m=5
— m=10 0.000 — m=10
0.00 — m=20 — m=20
“ —— m=40 —— m=40
-0.01 -0.005
-0.02
-0.010
1980 2000 2020 1980 2000 2020
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OOS second moment prediction

22 S I w(N) [xss1x) 1 — 3 (2) V™ (25)T — iy, |2
OOS -+ 3
“T S w(/vs>nxs+1x; — o2 I, |2

@ Left panel rolling. Right panel expanding. Outperforms during major market crashes

0.05
0.06
label label
0.00 m=5 — m=5
— m=10 0.04 — m=10
— m=20 — m=20
m=40 —— m=40
-0.05 0.02
-0.10 0.00
1980 2000 2020 1980 2000 2020
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OOS realized and predicted explained variance by factors
—hHS. 2
o Left panel: total Rf.'; oos =1— 70! o1 =6 (2o s

s=t [[xs+1115
. . . tr(psY C f. sy T
@ Right panel: factor-explained variance (@™ (=) OZrtgH]d) (2 )
@ Increased factor-explained variance (dependence) during major market crases.
o ldiosyncratic risk explains more than 75% of variance on average
0.5 0.6
0.4
label 0.4 label
0.3 — m=5 — m=5
— m=10 — m=10
02 | — m=20 — m=20
—— m=40 0.2 —— m=40
0.1
0.0 0.0
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OOS realized and predicted Sharpe ratio rolling and expanding

@ Realized Sharpe ratio of cMVE portfolio Et_lp,t vs. 1/N; portfolio
o Left panel: predicted maximal Sharpe ratio.

o Middle panel: realized Sharpe ratio rolling. Right panel: realized Sharpe ratio expanding

8

label label
— 1n — 1n
— m=s 2 — m=s
4
— m=10 — m=10
— m=20 — m=20
— m=40 1 — m=40
2
0 0
1980 2000 2020 1980 2000 2020 1980 2000 2020
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Conclusion and Outlook

Novel nonparametric joint estimator of conditional mean and covariance for (possibly large)
unbalanced panels

Based on moment kernel, given as solution to convex semidefinite problem

Consistency: estimated covariance matrix is positive semidefinite

@ Gives direct estimate of conditional mean-variance efficient portfolio and max Sharpe ratio

Asymptotic consistency and finite-sample guarantees of empirical estimator

Simulation study confirms findings

Further research: higher-order moments
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