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J.G. Andréasson and P.V. Shevchenko (2022). A bias-corrected
Least-Squares Monte Carlo for solving multi-period utility
models. European Actuarial Journal 12, pp. 349–379.
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Mathematical Problem Definition

Let (Ω, F , {Ft}0≤t≤T , P) be a filtered complete probability space and Ft

represents the information available up to time t. All the processes
introduced below are adapted to {Ft}t≥0.

Notation:

Controlled state variable X = (Xt)t=t0,...,T

Control π = (πt)t=t0,...,T

Random disturbance Z = (Zt)t=t0,...,T

State variable evolution Xt+1 = T (Xt , πt ,Zt+1)

Objective: maximise the expected value of the total reward

Vt0(x) = sup
π

E

[
βT−t0GT (XT ) +

T−1∑
t=t0

βt−t0Rt(Xt , πt)|Xt0 = x

]

where GT and Rt are functions satisfying integrability conditions and β is
discounting factor.
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Mathematical Problem Definition

This type of problem can be solved with backward recursion of the
Bellman equation, where

VT (x) = GT (x),

Vt(x) = sup
πt

{Rt(x , πt) + E [βVt+1(Xt+1)|Xt = x ;πt ]} .

Optimal value of control is found as

π∗t (x) = arg sup
πt∈At

{
Rt(x , πt) + E

[
βVt+1(Xt+1)

∣∣∣ Xt = x ;πt
]}

.

The solution of such problem is often not possible to find analytically and
numerical methods are required. As the number of state variables,
stochastic processes, or control variables increases, the numerical solution
becomes very expensive computationally and simulation methods such as
LSMC (Longstaff and Schwartz, 2001; Tsitsiklis and Van Roy, 2001) are
favoured.
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Population Aging - United Nations (2013): percentage
aged 60 years or over, 2012 vs 2050 forecast
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Motivation

Australia’s accumulation benefit pension system is still young, but
superannuation assets already accumulated $2.7tn in June 2018
($3.5tn in March 2024, 4th largest in the world).
More retirees - due to both increased life expectancy and an ageing
population. Currently 15% of population is 65+ people.
Age and Service Pension payments will change from 2.9% of GDP in
2015 to 3.6% in 2055 (the number of 65+ will more than double).
Social security and welfare is 38% of taxpayers money in 2018-19
Australian government budget (and approximately the same in
2022-23), where assistance for aged Australians is the largest part.
Limited knowledge amongst retirees (and advisors) to manage funds
and Age Pension (Spicer et al., 2013). Retirement funds have
changed from monthly benefit to lump sum at retirement.
Modelling consumption, bequest, home ownership, and
investment is important for retirees and the Australian Pension
system. Current modelling typically is scenario based and
ignores the dynamic response or too simplistic.
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Australian superannuation

Three pillars - superannuation guarantee, private savings and
government provided Age Pension.

Superannuation guarantee contribution rate: is 9% in 2002-03
increasing to 11% in 2023-2024 and set to reach 12% in 2025.

Means-tested Age Pension: subject to income-test and asset-test, and
entitlement age of 65.5 in 2017 (increased to 67 from 2023).

Family home is excepted from Age pension asset-test.

Income-test based on actual income, deemed income and drawdown
of allocated pension accounts.

Policies and regulations are constantly changing.

Allocated pension accounts are purchased with superannuation,
and subject to minimum withdrawal rates.

Age ≤64 65–74 75–79 80–84 85–89 90–94 ≥95

Min. drawdown 4% 5% 6% 7% 9% 11% 14%
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PRE2015 2015 2017

Full Age Pension singles (PS
max) $22,721 $22,721 $22,721

Full Age Pension couples (PC
max) $34,252 $34,252 $34,252

Income-Test Drawdown Deemed Deemed

Threshold singles (LS
I ) $4264 $4264 $4264

Threshold couples (LC
I ) $7592 $7592 $7592

Rate of reduction (ϖd
I ) $0.5 $0.5 $0.5

Deeming threshold singles (κS) - $49,200 $49,200
Deeming threshold couples (κC) - $81,600 $81,600
Deeming rate below κd (ς−) - 1.75% 1.75%
Deeming rate above κd (ς+) - 3.25% 3.25%

Asset-Test

Threshold homeowners singles (LS,h=1
A ) $209,000 $209,000 $250,000

Threshold homeowners couples (LC ,h=1
A ) $296,500 $296,500 $375,000

Threshold non-homeowners singles (LS,h=0
A ) $360,500 $360,500 $450,000

Threshold non-homeowners couples (LC ,h=0
A ) $448,000 $448,000 $575,000

Rate of reduction (ϖd
A) $0.039 $0.039 $0.078

In our study we use the Australian pension system rules from 2017 as in Andréasson et
al. (2017). However, note that the pension system rules are revised regularly.
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Expected Utility Model: Base Model Assumptions

Agent (household) is an expected utility maximiser based on
hyperbolic absolute risk aversion (HARA).

Assuming time-separable additive utility functions for consumption,
housing and bequest. Each year alive the retiree receives utility from
consumption and housing, and bequest in case of death.

Start at retirement t = t0 where the retiree can allocate wealth into
housing and an allocated pension account. Lives no longer than
terminal time T .

Starts as either a couple or single. Couples have mortality risk where
if one spouse dies, it becomes a single household.

All wealth is held in an allocated pension account, which does
not attract taxes on capital gains.

Each period the retiree receives Age Pension, consumes part of his
wealth and allocates the remaining into a risky asset and risk-free
asset.
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Base Model Definition

Denote a state vector as Xt = (Wt ,Gt ,H), where

Wt denotes the current level of wealth,

Gt is life status with realisations in G = {∆, 0, 1, 2} indicating
whether the agent is dead, died this period, alive in a single household
or alive in a couple household,

H denotes wealth invested in housing at t0.

The utility received at time t is subject to the control variables

αt - proportion drawdown of liquid wealth,

δt - proportion liquid wealth allocated to risky assets,

ϱ - wealth allocated to housing only at time t = t0.

We aim to find optimal decision rule πt(xt) = (αt , δt) which is the action
at time t and depends on the current state xt . Then a sequence (policy)
of decision rules is given by π = (πt0 , ..., πT−1) for t = t0, ...,T − 1.
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Model Definition

Wealth process is driven by stochastic return Zt+1
i .i .d∼ N (µ, σ2) and

deterministic risk-free rate r , and controlled by drawdown αt and risky
asset allocation δt , given by

Wt+1 = (Wt − αtWt)
(
δte

Zt+1 + (1− δt)e
rt
)
,

s.t Ct = αtWt + Pt ,

Wt + Pt − Ct ≥ 0,

Wt0 = W − H,

H ∈ {0, [HL,W]},

where Wt is the liquid wealth before withdrawal, rt is the time dependent
but deterministic real risk-free rate and W is the initial total wealth.
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Model Definition

Each period the agent receives utility, given by

Rt(Wt ,Gt , αt ,H) =

 UC (Ct ,Gt , t) + UH(H,Gt), if Gt = 1, 2,
UB(Wt ,H), if Gt = 0,
0 if Gt = ∆,

with terminal condition (t = T ) given by

R̃(WT ,GT ,H) =

{
UB(WT ,H), if GT ≥ 0
0, if GT = ∆.

We need to find a solution of the following problem

Ṽ := max
ϱ

[
sup
π

Eπ
t0

[
βt0,T R̃(WT ,GT ,H) +

T−1∑
t=t0

βt0,tRt(Wt ,Gt , αt ,H)

]]

where Eπ
t0 [·] is the expectation conditional on information and decision at

time t = t0 and βt,t′ is the discounting from t to t ′.
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Model Definition

Consumption is based on drawdown of wealth and Age Pension received.
Utility is received from consumption exceeding the consumption floor.

UC (Ct ,Gt , t) =
1

ψt−t0γd

(
Ct − c̄d
ζd

)γd

, d =

{
C, if Gt = 2 (couple),
S, if Gt = 1 (single),

where γd ∈ (−∞, 0) is the risk aversion, c̄d the consumption floor, Ct the
consumption for year t and ζd the scaling factor to normalise between
singles and couples. Let ψ ∈ [1,∞) be the utility parameter for the health
proxy.

Pavel V. Shevchenko Optimal decisions in retirement 12 June 2024 13 / 68



Model Definition

Bequest utility function is defined as

UB(Wt ,H) =

(
θ

1− θ

)1−γS

(
θ

1−θa+Wt + H
)γS

γS
,

where Wt is the liquid wealth available for bequest, γS the risk aversion of
bequest utility (same as consumption risk aversion for singles), a is the
threshold for luxury bequest and θ ∈ [0, 1) is the degree of altruism.
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Model Definition

Housing generates utility through a flow of services, approximated with
the house value,

UH(H) =
1

γH

(
λdH

ζd

)γH

,

where γH is the risk aversion parameter for housing (allowed to be
different from risk aversion for consumption and bequest), ζd is the same
scaling factor as for consumption, H is the market value of the family
home at time of purchase and λd ∈ [0, 1] is the preference of housing
defined as a proportion of the market value.
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Age Pension Formula

Over 90% of income comes from allocated pensions, hence we assume that
wealth in the asset test equals allocated pension and the drawdown is
considered income. The means test is subject to different thresholds for
single, couples and whether they are homeowners or not, where

Pd
max is the full Age Pension.

Ld is the threshold for the asset/income test.

ϖd is the taper rate for assets/income test.

h = {0, 1} whether the retiree is a homeowner or not.

Combined Age Pension formula

Pt := f (αt ,Wt , t) = max
[
0,min

[
Pd
max,min [PA(Wt),PI(αtWt , t)]

]]
.

Asset test: PA(Wt) = Pd
max − (Wt − LdA)ϖ

d
A.

Income test: PI(αtWt , t) = Pd
max − (αtWt −M(t)− Ld ,hI )ϖd

I

Income test deduction: M(t) =
Wt0
et0

(1 + r̃)t0−t , where et0 is the life

expected at age t0 and r̃ the inflation.
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New Age Pension policy

The calibrated model is already outdated:

From 2015, deemed income is used in allocated pension (previously
drawdown).

In 2017, the asset-test thresholds were ‘rebalanced’ and taper rate
doubled.

Deemed income in the pension function:

PI := Pd
max −

(
PD(Wt)− LdI

)
ϖd

I ,

PD(Wt) = ς−min
[
Wt , κ

d
]
+ ς+max

[
0,Wt − κd

]
.
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Stochastic control problem formulation

Optimal stochastic control problem is solved numerically with backwards
recursion of the Bellman equation, starting from terminal condition

VT (XT ) = R̃T (WT ,GT ,H),

and for each t < T

Vt(Xt) = sup
πt

{Rt(Wt ,Gt , αt ,H) + βt,t+1 Et [Vt+1(Xt+1) | Xt ;πt ]} .

Then, optimal housing decision control ϱ maximising V0(X0) is calculated.

Note that the death probabilities are not explicit in the objective function,
but affect the evolution of the family status and are involved in the
calculation of the conditional expectation.
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Numerical solution

Discretise wealth state W and house state H on log-equidistant grid
and solve recursively with backwards induction.

Family status state G can be avoided by weighting the reward
function with survival probabilities in the value function.

Numerical integration by Gauss-Hermite Quadrature, with 5 nodes.

Interpolation via shape preserving Piecewise Cubic Hermite
Interpolation Polynomial (PCHIP), which preserves the monotonicity
and concavity.

Decision variable for housing enough to solve at t = t0.
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Calibration

Data were taken from Australian Bureau of Statistics Household
Expenditure Survey (HES) 2009-2010, and Survey of Income and
Household (SIH) 2009-2010.

Only a snapshot, does not offer data of cohorts over time.

Data aggregated based on households in retirement and not part of
the work force, split over both single (2,038 data points) and couple
households (2,017 data points).

Calibrate parameters via maximum likelihood estimation on
consumption and housing samples.

Calibrated utility parameters with standard error:

γS γC γH θ a c̄S c̄C ψ λ

Value - 2.77 - 2.29 -2.58 0.54 26 741 11 125 18 970 1.47 0.037
Std. Error 0.12 0.14 0.19 0.03 1 377 1 011 1 682 0.04 0.006
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Calibration Output - Optimal Consumption
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Calibration Output - Optimal Consumption
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Calibration Output - Optimal Consumption

Single Household t=65 t=75 t=85

Couple Household t=65 t=75 t=85

Figure: Comparison of optimal consumption over time.
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Figure: Optimal drawdown and consumption for non-homeowner couple households for
a given liquid wealth at the age t, under the three different policy scenarios in the case
of low returns (µ = 0.0325).
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Calibration Output - Phases of Means-test
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Conclusions - Calibrated model

Optimal drawdown is highly sensitive to the means test early in
retirement due to the number of expected years remaining to receive
Age Pension, but decreases with time so optimal consumption
becomes approximately linear.

The Age Pension works as a buffer against investment losses,
hence optimal allocation to risky asset increases rapidly when
the asset test binds and suggest 100% risky allocation when
full Age Pension is received.

Optimal housing is similar between single and couple households in
terms of proportion of wealth, but house value will differ due to
different wealth levels. The high allocation for lower wealth matches
the characteristics where households with lower wealth levels tend to
have the family home as their only asset.
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Least-Squares Monte Carlo method for model extensions

The model should be extended with additional deposit account, stochastic
interest rate, housing decisions, reverse mortgage, annuitization, ...

Additional states and stochastic variables make a quadrature based
numerical solution computationally infeasible.

Least-Squares Monte Carlo (LSMC) is an approximate method for
solving stochastic control problems, e.g. Longstaff and Schwartz
(2001) for valuation of American options.

Essentially a simulation and regression algorithm, where random
paths are simulated and the conditional expectation in Bellman
equation is approximated with a regression function, then solved via
backwards recursion for stochastic control problems.

Original exogenous LSMC extended in Kharroubi et al. (2014) with
endogenous state variables and control randomisation.
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Problem Definition

Let (Ω, F , {Ft}0≤t≤T , P) be a filtered complete probability space and Ft

represents the information available up to time t. All the processes
introduced below are adapted to {Ft}t≥0.

Notation:

Controlled state variable X = (Xt)t=t0,...,T

Control π = (πt)t=t0,...,T

Random disturbance Z = (Zt)t=t0,...,T

State variable evolution Xt+1 = T (Xt , πt ,Zt+1)

Objective: maximise the expected value of the total reward

Vt0(x) = sup
π

E

[
βT−t0GT (XT ) +

T−1∑
t=t0

βt−t0Rt(Xt , πt)|Xt0 = x

]
,

where GT and Rt are functions satisfying integrability conditions and β is
discounting factor.

Pavel V. Shevchenko Optimal decisions in retirement 12 June 2024 32 / 68



Problem Definition

This type of problem can be solved with backward recursion of the
Bellman equation, where

VT (x) = GT (x),

Vt(x) = sup
πt

{Rt(x , πt) + E [βVt+1(Xt+1)|Xt = x ;πt ]} .

Optimal value of control is found as

π∗t (x) = arg sup
πt∈At

{
Rt(x , πt) + E

[
βVt+1(Xt+1)

∣∣∣ Xt = x ;πt
]}

.

The solution of such problem is often not possible to find analytically and
numerical methods are required.
As the number of state variables, stochastic processes, or control variables
increases, the numerical solution becomes very expensive computationally
and simulation methods such as LSMC are favoured.
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If the state variable is not affected by the control, the idea behind
utilitising the LSMC method is to approximate the conditional
expectation

Φt(Xt) = E [βVt+1(Xt+1)|Xt ] ,

by a regression scheme with independent variables Xt , and response
variable βVt+1(Xt+1). The approximation of the function is then
denoted as Φ̂t .

If the state variable is affected by control, then techniques such as
control randomization are required where the conditional expectation

Φt(Xt , πt) = E [βVt+1(Xt+1)|Xt ;πt ]

is estimated by regression of βVt+1(Xt+1) on Xt and randomised πt
Kharroubi et al. (2014).
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Arguments for LSMC

Arguments for LSMC:

Does not suffer from “curse of dimensionality”, hence faster than
other numerical methods as the number of state variables increase.

No restrictions on dynamics of stochastic processes (contrary to
PDE’s). Enough to be able to simulate a path.

Parametric estimate in feedback form of control (no grid required).

Arguments against LSMC:

Approximate method only, and can have substantial errors piling up
over multiple periods.

Can be computationally intensive, especially for the optimisation of
control variables.

Basis function can be difficult to find and is highly problem specific.
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LSMC for models with Utility Functions

There are difficulties with LSMC in the case of utility type models; difficult
to fit due to extreme curvature over the full sample (extreme
heteroskedasticity). Proposed method: regressing on the transformed
value function and adjusting for the retransformation bias.

Define a transformation H−1 such that H−1(H(x)) = x . Let L(Xt , πt) be
a vector of basis functions and Λt the corresponding regression coefficients
vector, such that

E
[
H−1(βVt+1(Xt+1))|Xt ;πt

]
= Λ′

tL(Xt , πt).

If M independent Markovian paths of state and control variables are
simulated, one can consider the ordinary linear regression

H−1(βVt+1(X
m
t+1)) = Λ′

tL(X
m
t , π

m
t ) + ϵmt ,

ϵmt
iid∼ Ft(·), E[ϵmt ] = 0, var[ϵmt ] = σ2t , m = 1, ...,M

Λ̂t = argmin
Λ

∑
m

[
H−1(V (t,Xm

t ))−Λ′L(Xm
t , π

m
t )
]2
.
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Duan’s Smearing Estimate (Duan, 1983)

Our objective is to estimate Φt(Xt , πt) = E [βVt+1(Xt+1)|Xt ;πt ]:

HB(Λ′
tL(Xt , πt)) := Φt(Xt , πt) =

∫
H(Λ′

tL(Xt , πt) + ϵt)dFt(ϵt),

where Ft(ϵt) is the distribution of disturbance term ϵt . Obviously,

ĤB(Λ̂′
tL(Xt , πt)) = H(Λ̂′

tL(Xt , πt))

will be neither unbiased nor consistent unless the transformation is linear.
If a specific distribution is assumed for ϵt , then the integration in can be
performed. Otherwise, the empirical distribution of residuals

ϵ̂mt = H−1(βVt+1(X
m
t+1))− Λ̂′

tL(X
m
t , π

m
t ),

can be used to perform the required integration leading to the following
Smearing Estimate:

ĤB(Λ̂′
tL(Xt , πt)) =

1

M

M∑
m=1

H(Λ̂′
tL(Xt , πt) + ϵ̂mt ),

Pavel V. Shevchenko Optimal decisions in retirement 12 June 2024 37 / 68



Smearing estimate – example

Suppose we consider regression lnYi = β′
Xi + ϵi and we want to estimate

E[Y γ/γ], then the smearing estimate is

1

n

n∑
i=1

(
eβ̂

′
X+ϵ̂i

)γ
γ

=

(
eβ̂

′
X

)γ
nγ

n∑
i=1

e ϵ̂iγ .

The smearing estimate works well for non-normal errors and can
accommodate for heteroskedasticity, provided it is not related to a
covariate.

Pavel V. Shevchenko Optimal decisions in retirement 12 June 2024 38 / 68



Controlled Heteroskedasticity

If heteroskedasticity is present in the regression with respect to state and
control variables, a method that accounts for the heteroskedasticity is
required. In this case the conditional variance can be modelled as

var[ϵt |Xt , πt ] = [Ω(L′
tC(Xt , πt))]

2

where Ω(·) is some positive function, Lt is the vector of coefficients and
C(Xt , πt) is a vector of basis functions. There are various standard ways to
find estimates L̂t , the one we use is based on the linear regression of the
log of squared residuals ϵ̂mt . Then, one can use the Smearing Estimate
with Controlled Heteroskedasticity:

ĤB(Λ̂′
tL(Xt , πt)) =

1

M

M∑
m=1

H

(
Λ̂′

tL(Xt , πt) + Ω(L̂
′
tC(Xt , πt))

ϵ̂mt

Ω(L̂
′
tC(X

m
t , π

m
t ))

)

Here, it is also common to replace Λ̂t with the weighted least squares
estimator that can be found after estimation of Ω(·).
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Algorithm LSMC for exogenous state

1: for t = 1 to N do [Forward simulation]
2: for m = 1 to M do
3: Xm

t := Tt(X
m
t−1, zt) [simulate path]

4: end for
5: end for
6: for t = N to 0 do [Backward solution]
7: if t = N then
8: V̂t(Xt) := RN(Xt)
9: else if t < N then

[Regress transformed value function on state variables]

10: Λ̂t := argminΛt

∑M
m=1

[
Λ′

tL(X
m
t )− H−1(βV̂t+1(X

m
t+1))

]2
11: Find bias corrected transformation HB(Λ̂′

tL(Xt))

12: Φ̂t(Xt) = HB(Λ̂′
tL(Xt)) [Approximate conditional expectation]

13: for m = 1 to M do
[Optimal control]

14: π∗
t (X

m
t ) := arg supπt∈A

{
Rt(X

m
t , πt) + Φ̂t(X

m
t )

}
15: V̂t(X

m
t ) := Rt(X

m
t , π∗

t (X
m
t )) + βV̂t+1(X

m
t+1)

16: end for
17: end if
18: end for
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Pricing Bermudan option using LSMC – numerical example

Table: Price and standard error of the Bermudan option estimated using standard
LSMC (V̂ (0)), LSMC with log transformation of the value function without bias

correction (V̂ (1)) and LSMC with log transformation of value function and bias

correction (V̂ (2)) using smearing estimate. The results are based on M sample paths
and 20 independent repetitions.
The ‘exact’ price obtained by the Binomial Tree method is $4.3862.

M V̂ (0) V̂ (1) V̂ (2)

1,000 4.4984 (0.032) 4.4336 (0.038) 4.4054 (0.039)
10,000 4.4616 (0.007) 4.4161 (0.007) 4.3962 (0.008)
100,000 4.4457 (0.003) 4.4048 (0.004) 4.3857 (0.004)
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LSMC Algorithm: Endogenous state and random control

We utilise a discretised version of Kharroubi et al. (2015) with some
modifications in forward simulation.

Algorithm Forward simulation

1: for t = 0 to N − 1 do
2: for m = 1 to M do

[Simulate random samples ]
3: Xm

t := Rand ∈ X ▷ State
4: π̃m

t := Rand ∈ A ▷ Control
5: zmt+1 := Rand ∈ Z ▷ Disturbance

[Compute the state variable after control]

6: X̃m
t+1 := Tt(X

m
t , π̃m

t , z
m
t+1) ▷ Evolution of state

7: end for
8: end for
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Algorithm Backward solution (Realised value)

1: for t = N to 0 do
2: if t = N then V̂t(X̃t) := RN(X̃t)
3: else if t < N then

[Regression of transformed value function]

4: Λ̂t := argminΛt

∑M
m=1

[
Λ′

tL(X
m
t , π̃t)− H−1(βV̂t+1(X̃

m
t+1))

]2
5: [Approximate conditional expectation] Φ̂t(Xt , π̃t) := HB(Λ̂′

tL(Xt , π̃t))
6: for m = 1 to M do
7: X̂m

t := X̃m
t

[Optimal control] π∗
t (X̂

m
t ) := arg supπt∈A

{
Rt(X̂

m
t , πt) + Φ̂t(X̂

m
t , πt)

}
[Update value function with optimal paths]

8: V̂t(X̂
m
t ) := Rt(X̂

m
t , π∗

t (X̂
m
t ))

9: X̂m
t+1 := Tt(X̂

m
t , π∗

t (X̂
m
t ), zmt )

10: for tj = t + 1 to N − 1 do

11: V̂t(X̂
m
t ) := V̂t(X̂

m
t ) + βtj−tRtj (X̂

m
tj , π

∗
tj (X̂

m
tj ))

12: X̂m
tj+1 := Tt(X̂

m
tj , π

∗
tj (X̂

m
tj ), z

m
tj )

13: end for
14: V̂t(X̂

m
t ) := V̂t(X̂

m
t ) + βN−tRN(X̂

m
N )

15: end for
16: end if
17: end for
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Regression surface versus realised value

Kharroubi et al. (2014) present two alternative versions of the control
randomisation algorithm: the one that uses the regression surface to
update the value function,

V̂t(Xt) = Rt(Xt , π
∗
t (Xt)) + Φ̂t(Xt , π

∗
t (Xt))

and another one that uses the realised value function,

V̂t(Xt) = Rt(Xt , π
∗
t (Xt)) + βV̂t+1(Xt+1)

The first algorithm is the so-called value function iteration (VFI), while the
second one is the so-called policy function iteration (PFI). The PFI
requires recalculation of the sample paths for t + 1 to T after each
iteration backwards in time, as the optimal control affects the future state
variables hence changes the simulated paths.
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Example - CRRA Consumption model

Consider a simple multi-period utility model where Rt(Xt , αt) =
1
γ (Xtαt)

γ

and agent optimises consumption each period, αt ∈ (0, 1). Endogenous
state variable wealth X π

t grows between periods based on a stochastic
return Zt ∼ N (µ = 0.05, σ = 0.2):

Xt+1 = Xt(1− αt)e
Zt+1
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Example - CRRA Consumption and Investment model

Simple multi-period CRRA utility model where Rt(Xt , αt) =
1
γ (Xtαt)

γ .
Agent optimises consumption and risky asset allocation each period,
πt = (αt , δt) ∈ [0, 1]× [0, 1]. γ = −10, endogenous state variable wealth
Xt grows between periods based on a stochastic return Zt ∼ N (0.1, 0.2)
and deterministic rate r = 0.03:

Xt+1 = Xt(1− αt)e
δtZt+1+(1−δt)r .
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Retirement Model Extensions

Introduce stochastic real interest rate as a Vasicek process. Yearly
discretised and simulated with

rt+1 = r̄ + e−b(rt − r̄) +

√
σ2R
2b

(1− e−2b)ϵt+1, ϵt
i .i .d∼ N (0, 1),

where r̄ ∈ R+ is the long term mean, b ∈ (0, 1] the speed of adjustments
and σR the volatility.

Introduce a separate taxable deposit account W̃t , which is important
since the pension account does not allow for deposits in retirement.
Always preferred for spending over liquid wealth. Same dynamics and
assumptions as liquid wealth.

Pavel V. Shevchenko Optimal decisions in retirement 12 June 2024 47 / 68



Model Extension: deposit account

Let νt be the minimum withdrawal rate. If Ct ≤ W̃t + Pt + νtWt , then

W+
t = Wt(1− νt),

W̃+
t = W̃t + Pt + νtWt − Ct ,

otherwise
W+

t = Wt + W̃t + Pt − Ct ,

W̃+
t = 0.

where consumption should satisfy the constraint that pension account is
non-negative

W̃t +Wt + Pt − Ct ≥ 0.
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The remaining liquid wealth after drawdown is invested in a risky asset
with real stochastic annual return Zt and a cash asset growing at the real
rate r̃t,t+1.

Evolution of wealth accounts over (t, t + 1):

Wt+1 = W+
t

(
δte

Zt+1 + (1− δt)e
r̃t,t+1

)
,

W̃t+1 = W̃+
t (δte

Zt+1 + (1− δt)e
r̃t,t+1)−Θ

(
W̃+

t (δte
Zt+1 + (1− δt)e

r̃t,t+1)− W̃+
t

)
,

where function Θ(x) calculates the tax on the deposit account earnings.

The cash asset annual growing rate is

r̃t,t+1 =

∫ t+1

t
rudu,

where the short rate rt is assumed to follow a Vasicek process

drt = b(r̄ − rt)dt + σRdB(t),
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Model Extension 1 - Annuities

A retiree can at any time t ∈ {t0, ...,T − 1} make a (non-reversible)
decision to purchase an annuity for amount At that will provide annual life
time payments yt (constant in real terms) starting from t + 1. This leads
to a new state variable Yt , which holds the information on the size of
annuity payments each period evolving as

Yt+1 = Yt + yt , Yt0 = 0.

The evolution of the pension Wt and deposit W̃t accounts:
If Ct + At ≤ W̃t + Pt + νtWt + Yt , then

W+
t = Wt(1− νt),

W̃+
t = W̃t + Pt + νtWt − Ct + Yt − At ,

otherwise
W+

t = Wt + W̃t + Pt − Ct + Yt − At ,

W̃+
t = 0,
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To ensure that the pension account Wt is nonnegative, the possible
actions Ct and At should satisfy the constraint:

Wt + W̃t + Pt + Yt − Ct − At ≥ 0

in addition to At ≥ 0, Ct > c̄d .

Then the optimisation problem should be solved with state vector
extended to Xt = (Wt , W̃t ,Gt ,Ht , rt ,Yt) to find optimal πt = (Ct , δt ,At)
for t = t0, ...,T − 1.

The price of annuity purchased by retiree is

at(y) :=
T∑

i=t+1

ip
1−h
t J(t, i , y),

where J(t, i , y) represents the price of an inflation linked zero coupon
bond at time t with maturity i and face value y , ipt is the probability of
surviving from year t to i , h = 0.15 is price loading. This means that yt
should be found by solving At = at(yt).
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At time t, the price of a bond with maturity t ′ is

J(t, t ′, y) = yEQ̃ [e−
∫ t′
t rτdτ ] := ye−r(t,t′)(t′−t),

where Q̃ is the risk-neutral probability measure for pricing interest rate
derivatives and r(t, t ′) is the zero rate (yield) from t to t ′. The
corresponding Vasicek risk-neutral process is

drt = [b(r̄ − rt)− λσR ]dt + σRdB̃(t),

where λ is the market price of risk and B̃t is the standard Brownian

motion under Q̃ and

r(t, t ′) =
− lnA(t, t ′) + B(t, t ′)rt

t ′ − t
, B(t, t ′) =

1

b

(
1− e−b(t′−t)

)
.

A(t, t ′) = exp

[
(B(t, t ′)− t ′ + t)

(
r̄ − λσR

b
− σ2

R

2b2

)
− σ2

R

4b
B(t, t ′)2

]
,

This means that at(y) depends on rt .
We estimate parameters using two-stage procedure: the real rt process is
estimated using spot interest rate data and then the market price of risk λ
is estimated using termstructure of zero coupon bonds.
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Annuities in the Age pension means tests in 2017

The definition of annuity income for the income test is

yt −
atx (yt)

ex − tx
,

where tx is the annuity purchasing time and ex is the life expectancy at
time tx .
In the asset test, the value of the annuity is assumed to be equal to the
original purchase price of the annuity with a linear yearly value decrease
until the life expectancy age is reached, i.e.

max

(
atx (yt)−

atx (yt)

ex − tx
(t − tx), 0

)
.

These rules cause some difficulties to our model, as it will require
additional state variables in terms of annuity purchase price and annuity
purchasing time (which complicates the problem definition further as it is
allowed to add on to annuities later in retirement).
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Annuities in the Age pension means tests – approximation

Function for income test

PI := Pd
max −

(
PD(Wt) + Yt(1−Υ)− LdI

)
ϖd

I .

Υ = 0.9.

Function for the asset-test

PA := Pd
max −

(
Wt + at(Yt)− Ld ,hA

)
ϖd

A.
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Figure: Optimal annuitisation at age t versus liquid wealth (no prior
annuitisation).
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Figure: Optimal cumulative annuitisation over time given initial liquid wealth.
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Conclusions - Extension 1

It is optimal to annuitise earlier rather than later in retirement (due to
the mortality credit). The exception is for very poor households.

Delaying annuitisation leads to less wealth annuitised, but higher
annuity payments.

The means-test decreases the ‘demand’ for annuities, but does not
eliminate it. Retiree with low likelihood to access Age Pension has
constant annuitisation rate.

The mortality credit from the annuity dominates the utility received
from bequeathing this wealth. Optimal annuitisation is the same
with/out access to a risk-free rate when loading on annuity
premium is zero.
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Model Extension 2 - Flexible housing

Australian retirees are ‘house rich, but asset poor’, and can optimise Age
Pension payments by overallocating to the family home. We extend the
model to flexible housing decisions by scaling housing and access to a
reverse mortgage.

Reverse mortgage:

Loan against the home equity up to an age dependent loan-to-value
ratio, with no amortisation/interest payments required.

Starts at 20-25% at age 65, and increases 1% per year.

Multiple options how to access: lump sum, credit line, tenure, etc.

Interest and fees accumulate, but is capped by the house value.

At death (or sale of home) the loan is paid off, and any equity
remaining is returned.
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Model Extension 2 - Flexible housing

The retiree can at any time up or downscale housing with a
proportion τt ∈ [−1,∞], to get a new house valued

Ht+1 = Ht(1 + τt).

If τt ̸= 0, transaction cost applies to the current house value.

The retiree can at any time chose a proportion lt ∈ [0, I (t)] up to
loan-to-value threshold Lt as a reverse mortgage from the home
value, which adds to the outstanding loan state Lt .

The loan-to-value ratio is time dependent and defined as a proportion
of the home value Lt = Ht I (t) where

I (t) = 0.2 + 0.01(min(85, t)− 65).

The loan value state variable therefore evolves as

Lt+1 = (LtI{τt=0} + ltHt(1 + τt))e
r̃t,t+1+φ,
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Model Extension 2 - Flexible housing

The costs of any decision (transaction cost, the difference in house
assets in case of scaling and repayment of loan) is reflected in the
wealth process. Define

b(lt , τt , Lt ,Ht) := ltHt(1 + τt)− Iτt ̸=0 (Ht(τt + η) + Lt)

to represent all changes to the wealth from house scaling and reverse
mortgage decisions, where η is the proportional transaction cost.

The evolution of the pension Wt and deposit W̃t accounts:
If Ct ≤ W̃t + Pt + νtWt + b(lt , τt , Lt ,Ht), then

W+
t = Wt(1− νt),

W̃+
t = W̃t + Pt + νtWt + b(lt , τt , Lt ,Ht)− Ct ,

otherwise

W+
t = Wt + W̃t + Pt + b(lt , τt , Lt ,Ht)− Ct ,

W̃+
t = 0.
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Model Extension 2 - Flexible housing

The bequest function needs to include the house asset after any reverse
mortgage has been repaid, and becomes UB(Wt + W̃t ,max(Ht − Lt , 0)).

Then the optimisation problem should be solved with the state vector
extended to Xt = (Wt , W̃t ,Gt ,Ht , rt , Lt) to find optimal
πt = (Ct , δt , τt , lt) for t = t0, ...,T − 1.

We set cost of selling house: η = 6%, interest rate markup: φ = 0.0242;
and risk-free rate parameters: b = 0.64, r̄ = 0.013 and σR = 0.016.
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Some constraints need to be imposed on the control variables.

The option to take out (or add to) a reverse mortgage is bounded
from above by the difference of any outstanding mortgage and the
LVR, hence

lt ≤ max

(
0,

Lt − LtIτt=0

Ht(1 + τt)

)
.

Note that if the control variable τt for scaling housing is not 0, any
outstanding reverse mortgage must be paid back in full and a new
reverse mortgage is available against the new house value.
For the scaling of housing, an upper bound for how much the house
asset can be increased is

τt ≤
Wt + W̃t − Iτ ̸=0 (ηHt + Lt)

Ht
.

The lower bound is simply −1.
Finally, the budget constraint should be satisfied

b(lt , τt , Lt ,Ht) +Wt + W̃t + Pt − Ct ≥ 0

The constraint ensures that the wealth is enough to cover
consumption and scaling housing/reverse mortgage costs.
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Results - Extension 2
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Figure: Optimal proportion reverse mortgage at the retirement age.
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Conclusions - Extension 2

The proportion reverse mortgage increases with house value and
decreases with wealth (confirms empirical results in Chiang and Tsai
(2016)).

The proportion increases with age; never reaches the LVR.

It is never optimal to downsize housing, even when
overallocated, unless certain events are incurring significant
costs.

Scaling housing is more costly than reverse mortgages for accessing
part of home equity. In addition, a reverse mortgage allows the retiree
to still receive utility from the larger home.

Only marginal effect on initial housing allocation with the additional
control variables.
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