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Illustration – series of claim amounts
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Illustration – series of claim amounts with zeros (detail)
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Illustration – volatility clustering (deeper detail)
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Motivations

▶ Financial markets: not only returns, but also other market variables, e.g.,
financial volumes, number of trades, or financial durations (Gao et al., 2015) –
conditionally heteroscedastic and cannot reach negative values (many zeros)

▶ Health services: an abundance of zeros in medical expenditures (Neelon et al.,
2016) or (Hudecová et al., 2017)

▶ Hydrology: daily flows on intermittent and ephemeral streams Hutton (1990) –
the occurrences of zero flows and the time-varying variability of flow

▶ Meteorology: precipitation amounts – a significant portion of zero amounts
(Cuello et al., 2019)

▶ Intermittent demands: consumption and production data – the intermittent
demands are erratic and lumpy & many non-zero demand sizes in retail
enterprises (Petropoulos et al., 2016)
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Introduction and pitfalls

▶ A semi-continuous time series contain a portion of observations equal to a single
value (typically zero) and the remaining outcomes are positive.

E Naive approaches usually disregard the zeros, replace the zeros by surrogate
small positive values, or aggregate the data, which all lead to loss of
information. The logarithmic transformation is not feasible due to zeros.

E Common analytic procedures of the traditional time series analysis for
low-base-rate outputs are often inappropriate for such data and may result in
biased results.

→ That is why non-negative time series have long been a challenging modeling
problem.
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Hurdle GARCH

It is said that a random variable ε has a hurdle distribution if
▶ ε is non-negative having a distribution with a positive mass at point 0;
▶ the distribution of ε conditional on ε > 0 is continuous on R+.

Let {Yt}t∈Z be a time series following a hurdle GARCH(P,Q) model

Yt = σtεt, (1)

σ2
t = ω+

P∑
i=1

αiY
2
t−i +

Q∑
j=1

βjσ
2
t−j, (2)

where
▶ ω,αi,βj, 1 ⩽ i ⩽ P, 1 ⩽ j ⩽ Q, are unknown parameters;
▶ {εt}t∈Z is a sequence of random innovations (not necessarily independent)

with a hurdle distribution.
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Hurdle distribution

The innovations {εt}t∈Z satisfy
εt = etEt,

where
▶ {et}t∈Z and {Et}t∈Z are independent;
▶ {et}t∈Z are independent and identically distributed with a cumulative

distribution function (cdf) Fε|ε>0 and a density fε|ε>0 on the support R+ with
respect to the Lebesgue measure;

▶ {Et}t∈Z is a strictly stationary irreducible Markov chain with state space {0, 1}.
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Properties

▶ {εt}t∈Z is strictly stationary and ergodic
▶ Every εt has a hurdle distribution such that

P[εt ⩾ 0] = 1 and p := P[εt = 0] = P[E1 = 0] ∈ (0, 1)

▶ The transition probabilities p(j|i) = P[Et = j|Et−1 = i], 0 ⩽ i, j ⩽ 1
▶ The irreducibility condition ⇒ p(0|1) > 0, p(1|0) > 0, p(0|0) < 1, p(1|1) < 1

p =
p(0|1)

p(0|1) + p(1|0)
=

1 − p(1|1)
2 − p(0|0) − p(1|1)

▶ E εt = (1 − p)E e1, E ε2
t = (1 − p)E e2

1, Var εt = (1 − p)Var e1 + (E e1)
2p(1 − p)

▶ The parameters p(0|0) and p(1|1) models the sparsity of the non-zero values
▶ The density of εt with respect to a measure δ0 + λ+ is

fε(x) = p1{x = 0}+ (1 − p)fε|ε>0(x)1{x > 0}
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Conditional moments and conditional likelihood

▶ Let Ft = σ{Yt, . . . ,Yt−p,σt, . . . ,σt−q} and recall that 1{Yt−j > 0} = Et−j, j ⩾ 0

E[Yt|Ft−1] = E[σtetEt|Ft−1] = σtp(1|Et−1)E e1

E[Y2
t |Ft−1] = E[σ2

te
2
tEt|Ft−1] = σ2

tp(1|Et−1)E e2
1

Var[Y2
t |Ft−1] = σ2

tp(1|Et−1)
[

Var(e1) + (E e1)
2p(0|Et−1)

]
▶ Even if Var εt = 1, then σ2

t is generally not the conditional variance of Yt,
unless the variables {Et} are independent, i.e., p(1|0) = p(1|1) = 1 − p

▶ The conditional distribution of Yt given Ft−1 is hurdle with the cdf

FYt|Ft−1(y) = P[Yt ⩽ y|Ft−1] = p(0|Et−1)1{y ⩾ 0}+ p(1|Et−1)Fε|ε>0

( y

σt

)
▶ An identification condition on εt (or directly et) is needed
▶ Usually E ε2

t = 1 (Francq and Zakoïan, 2004)
M. Pešta (Charles University) Hurdle GARCH WU Vienna 11 / 30
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Conditional density

▶ (P +Q+ 1)-dimensional vector of the unknown GARCH parameters
ϑ = [ω, α⊺, β⊺]⊺ with α = [α1, . . . ,αP]

⊺, β = [β1, . . . ,βQ]⊺ and let
η = [ϑ⊺,p(0|0),p(1|1)]⊺

▶ Assume that the true (unknown) value of η is η0 satisfying

p0(0|0) ∈ (0, 1),p0(1|0) ∈ (0, 1),ω0 > 0,αi,0 ⩾ 0,βj,0 ⩾ 0

▶ Let us bear in mind that σt ≡ σt(η)

▶ The conditional density of Yt given Ft−1 with respect to δ0 + λ+ is

fYt|Ft−1(yt; η) = {p(0|Et−1)}
1{yt=0}

{
p(1|Et−1)

σt
fε|ε>0

(
yt

σt

)}1{yt>0}

,

where the dependence of σt on η and Ft−1 is given in (2)
M. Pešta (Charles University) Hurdle GARCH WU Vienna 12 / 30
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Conditional log-likelihood

▶ Assume that Y1, . . . ,YT are the observed data
▶ Conditionally on the initial (unobservable) values Y0, . . . , Y1−P and

σ0, . . . , σ1−Q (≡ F1), the conditional log-likelihood of Y1, . . . , YT becomes

ℓY1,...,YT |F0(η) =

T∑
t=1

[
log {p(0|0)}1{Yt = Yt−1 = 0}

+ log {1 − p(1|1)}1{Yt = 0 ∧ Yt−1 > 0}+ log {p(1|1)}1{Yt > 0 ∧ Yt−1 > 0}

+ log {1 − p(0|0)}1{Yt > 0 ∧ Yt−1 = 0}+
{

log fε|ε>0

(
Yt

σt

)
− logσt

}
1{Yt > 0}

]
.
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Half normal distribution

▶ Distribution of [ε|ε > 0] ∼ |Z| . . . Z ∼ N
(
0, v2

)
for v > 0

fε|ε>0(x) =

√
2

πv2 exp
{
−

x2

2v2

}
, x > 0
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Partial quasi-maximum likelihood estimator

▶ Gaussian hurdle quasi-maximum likelihood estimator (Gaussian HQMLE)
η̂H = [ω̂H, α̂⊺

H, β̂⊺
H, p̂H(0|0), p̂H(1|1)]⊺ as

arg min
ω,α,β,p(0|0),p(1|1)

T∑
t=1

[{
(1 − p)

Y2
t

σ̃2
t

+ log σ̃2
t − log(1 − p)

}
1{Yt > 0}

−2
[

log {p(0|0)}1{Yt = Yt−1 = 0}+ log {1 − p(1|1)}1{Yt = 0 ∧ Yt−1 > 0}

+ log {p(1|1)}1{Yt > 0 ∧ Yt−1 > 0}+ log {1 − p(0|0)}1{Yt > 0 ∧ Yt−1 = 0}
]]

▶ σ̃2
t ≡

(
σ̃t(η)

)2
:= ω+

∑P
i=1 αiY

2
t−i +

∑Q
j=1 βjσ̃

2
t−j, t ⩾ 1

▶ The initial values σ̃1−j = Y1, 1 ⩽ j ⩽ Q and Y1−i = Y1, 1 ⩽ i ⩽ P

▶ Thus, σ̂H,t = σ̃t(η̂H)
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Theorem – Strong consistency & AN (Hudecová and P., 2024)

Under regularity assumptions, η̂H
a.s.−−−−→

T→∞ η0. Under additional conditions,

√
T (η̂H − η0)

D−−−−→
T→∞ Np+q+3(0, J−1

H IHJ−1
H ),

where JH = J0 + 2V and IH = {(1 − p0)κ− 1}J0 + 4V such that J0 = Eη0 XtX
⊺
t ,

Xt =


Et

σ2
t(η0)

∂σ2
t

∂ϑ
(η0)

p0

1 − p0(0|0)
Et

−p0

1 − p0(1|1)
Et

 ,

V = diag
{

0(p+q+1),
p0

p0(0|0){1−p0(0|0)} , 1−p0
p0(1|1){1−p0(1|1)}

}
, and κ = E ε4

t.
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Exponential distribution

▶ Distribution of [ε|ε > 0] ∼ Exp(1 − p)

! New identification condition E εt = 1
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Partial quasi-maximum likelihood estimator (revisited)

▶ Exponential hurdle quasi-maximum likelihood estimator (Exponential
HQMLE) η̂E = [ω̂E, α̂⊺

E, β̂⊺
E, p̂E(0|0), p̂E(1|1)]⊺ as

arg min
ω,α,β,p(0|0),p(1|1)

T∑
t=1

[{
(1 − p)

Yt

σ̃t
+ log σ̃t − log(1 − p)

}
1{Yt > 0}

−
[

log {p(0|0)}1{Yt = Yt−1 = 0}+ log {1 − p(1|1)}1{Yt = 0 ∧ Yt−1 > 0}

+ log {p(1|1)}1{Yt > 0 ∧ Yt−1 > 0}+ log {1 − p(0|0)}1{Yt > 0 ∧ Yt−1 = 0}
]]

▶ σ̃2
t ≡

(
σ̃t(η)

)2
:= ω+

∑P
i=1 αiY

2
t−i +

∑Q
j=1 βjσ̃

2
t−j, t ⩾ 1

▶ The initial values σ̃1−j = Y1, 1 ⩽ j ⩽ Q and Y1−i = Y1, 1 ⩽ i ⩽ P

▶ Thus, σ̂E,t = σ̃t(η̂E)
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Exponential vs Gaussian quasi-likelihood – Reparametrization

! New identification condition E εt = 1
E Reparametrize

ωE
0 = ϕ2ωG

0 , αE
0 = ϕ2αG

0 , βE
0 = βG

0

under ϕ = E εt ∈ (0, 1) for E ε2
t = 1
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Theorem – Strong consistency & AN – II (Hudecová and P., 2024)

Under regularity assumptions, η̂E
a.s.−−−−→

T→∞ η0. Under additional conditions,

√
T (η̂E − η0)

D−−−−→
T→∞ Np+q+3(0, J−1

E IEJ−1
E ),

where JE = JE,0 + V and IE = {(1 − p0)κ − 1}JE,0 + V such that
JE,0 = EηE

0
XE,tX

⊺
E,t,

XE,t = Et

(
1

σt(ηE
0 )

∂σt

∂ϑ
(ηE

0 ),
p0

1 − p0(0|0)
,

−p0

1 − p0(1|1)

)⊺

,

V = diag
{

0(p+q+1),
p0

p0(0|0){1−p0(0|0)} , 1−p0
p0(1|1){1−p0(1|1)}

}
, and κ = E ε2

t.
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Bootstrap predictions

▶ To predict the future values of YT+h and the corresponding σT+h,
h = 1, . . . ,H, from the available data Y1, . . . ,YT

▶ Besides the point prediction of YT+h and σT+h, an interval prediction for YT+h

might be of interest
▶ The nature of the problem implies that to consider only the upper predictive

intervals for YT+h

→ Semi-parametric bootstrap where the zero-occurrence {Et} is bootstrapped
parametrically using the estimates of the transition probabilities p̂(0|0) and
p̂(1|1), while the size of the non-zero innovations {et} is bootstrapped
non-parametrically

M. Pešta (Charles University) Hurdle GARCH WU Vienna 21 / 30



Semi-continuous time series Hurdle GARCH Estimation Prediction Simulations Application Conclusions References

Semiparametric bootstrap – Algorithm
▶ Time series {Y1, . . . ,YT } and number of the bootstrap resamples B.
⇒ Compute η̂ and {σ̂t}

T+1
t=1 . Define ε̂t = Yt/σ̂t, t = 1, . . . , T , and consider only

the positive ε̂t, denoted as ê1, . . . , êT∗ , where T∗ =
∑T

t=1 1{Yt > 0}.
For b = 1 to B

1: Simulate {Ê
(b)
T+h}

H
h=1 as a realization of a Markov chain with the initial

value ET = 1{YT > 0} and the transition probabilities p̂(0|0) and p̂(1|1).
2: Generate {ê

(b)
T+h}

H
h=1 from a distribution with the cdf equal to the

empirical distribution function of ê1, . . . , êT∗ .
3: Calculate ε̂

(b)
T+h = Ê

(b)
T+hê

(b)
T+h.

4: Ŷ
(b)
T+h := σ̂

(b)
T+hε̂

(b)
T+h, h = 1, . . . ,H, and(

σ̂
(b)
T+h

)2
:= ω̂+

∑P
i=1 α̂i

(
Ŷ
(b)
T+h−i

)2
+
∑Q

j=1 β̂j

(
σ̂
(b)
T+h−j

)2, h = 2, . . . ,H,

where {Ŷ
(b)
t }Tt=1 ≡ {Yt}

T
t=1 and {σ̂

(b)
t }T+1

t=1 ≡ {σ̂t}
T+1
t=1 .

▶ Empirical (bootstrap) distribution of Ŷ(b)
T+h, b = 1, . . . ,B.
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Simulation study – estimation
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Synthetic data generating mechanism

▶ Hurdle GARCH(P,Q) model belongs to a general class of the hurdle models

Yt = σtεt, σt = f(Yt−1, . . . ,Yt−P,σt−1, . . . ,σt−Q),

which involves also the hurdle MEM type of models with various specifications
for the conditional mean

▶ These differ from the hurdle GARCH models by the normalization condition,
which, however, does not play a role in predictions

▶ Data are generated from a misspecified model, a linear hurdle MEM model

σt = ω+ αYt−1 + βσt−1, εt = Etet, E εt = 1,

where {Et} is a Markov chain, and et has a generalized Γ(α,β, δ) distribution,
proportional to xδα−1 exp{−(x/β)δ}, such that E εt = 1

▶ Γ(α,β, 1) is the ordinary gamma with shape α and scale β, while Γ(1/2,β, 2)
is a half normal distribution
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Bootstrap predictions under misspecification

▶ Comparison with models:
→ linear hurdle MEM model

σt = ω+ αYt−1 + βσt−1, εt = Etet, E εt = 1,

→ fully parametric logarithmic hurdle MEM approach from Hautsch et al. (2014)

logσt = ω+ α1 log εt−11{Yt−1 > 0}+ α01{Yt−1 = 0}+ β logσt−1

such that εt’s are supposed to follow a hurdle generalized F distribution
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Simulation study – prediction empirical coverage & interval length

(5, 1, 0.3, 0.3) (5, 1, 0.3, 0.7) (5, 1, 0.6, 0.8) (5, 1, 0.7, 0.7)

(2, 0.5, 0.3, 0.3) (2, 0.5, 0.3, 0.7) (2, 0.5, 0.6, 0.8) (2, 0.5, 0.7, 0.7)

(0.5, 2, 0.3, 0.3) (0.5, 2, 0.3, 0.7) (0.5, 2, 0.6, 0.8) (0.5, 2, 0.7, 0.7)

(0.5, 1, 0.3, 0.3) (0.5, 1, 0.3, 0.7) (0.5, 1, 0.6, 0.8) (0.5, 1, 0.7, 0.7)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

h

T

500

1000

2000

Estimation

GARCH

lin MEM

log MEM

(5, 1, 0.3, 0.3) (5, 1, 0.3, 0.7) (5, 1, 0.6, 0.8) (5, 1, 0.7, 0.7)

(2, 0.5, 0.3, 0.3) (2, 0.5, 0.3, 0.7) (2, 0.5, 0.6, 0.8) (2, 0.5, 0.7, 0.7)

(0.5, 2, 0.3, 0.3) (0.5, 2, 0.3, 0.7) (0.5, 2, 0.6, 0.8) (0.5, 2, 0.7, 0.7)

(0.5, 1, 0.3, 0.3) (0.5, 1, 0.3, 0.7) (0.5, 1, 0.6, 0.8) (0.5, 1, 0.7, 0.7)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1.2

1.3

1.4

1.11

1.14

1.17

1.10

1.15

1.20

1.25

1.30

0.94

0.96

0.98

1.25

1.50

1.75

2.00

1.0

1.2

1.4

1.6

1.00

1.25

1.50

1.75

1.0

1.2

1.4

1.6

0.95

1.00

1.05

0.7

0.8

0.9

1.0

0.95

1.00

1.05

1.10

0.50

0.75

1.00

1.25

1.50

1.75

0.89

0.91

0.93

0.95

0.7

0.8

0.87

0.88

0.89

0.90

0.91

0.50

0.75

1.00

1.25

1.50

1.75

h

T

500

1000

2000

Estimation

GARCH

lin MEM

log MEM

M. Pešta (Charles University) Hurdle GARCH WU Vienna 26 / 30



Semi-continuous time series Hurdle GARCH Estimation Prediction Simulations Application Conclusions References

Prediction – daily claim amounts – 10 days forecast

Hurdle GARCH lin-MEM log-MEM
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Conclusions

▶ Time series that contain non-negligible portions of zeros whereas the remaining
observations are positive.

▶ No parametric assumptions on the distribution of the innovations are made,
whereas the temporal dependencies of the series are parametrized.

▶ Our main contributions are:
− proposition of a semi-parametric model for non-negative time series that

exhibit time-varying variability;
− proving estimators’ strong consistency and asymptotic normality;
− utilization of the practical model selection criteria;
− providing bootstrap predictions.
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Thank you for your attention !

Questions ?
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