Automated effects selection via regularization in Cox frailty models

Andreas Groll* Trevor Hastie Thomas Kneib Gerhard Tutz

*Department of Statistics, TU Dortmund University

Research Seminar Summer Term 2024

WU Vienna, Institute for Statistics and Mathematics lune 14th 2024

technische universität dortmund

Motivation: PAIRFAM study

Data basis: Germany's current panel analysis of intimate relationships and family dynamics (**PAIRFAM**), release 4.0 (Nauck et al., 2013; Huinink et al., 2011).

Data has to be suitably prepared and structured for time-to-event data analysis:

Motivation: PAIRFAM study

Data basis: Germany's current panel analysis of intimate relationships and family dynamics (**PAIRFAM**), release 4.0 (Nauck et al., 2013; Huinink et al., 2011).

Data	has	to	be	suitably	prepared	and	structured	for	time-to-event	data	analysis:
------	-----	----	----	----------	----------	-----	------------	-----	---------------	------	-----------

id	start	stop	child	job	rel.status	religion	siblings		federal state
1	0	365	0	school	single	Christian	1		Niedersachsen
1	365	730	0	no info	single	Christian	1		Niedersachsen
1	730	2499	0	unempl./job-seeking/ housewife	single	Christian	1		Niedersachsen
1	2499	3261	0	full-time/ self-employed	single	Christian	1	•••	Niedersachsen
1	3261	3309	1	full-time/ self-employed	partner	Christian	1	•••	Niedersachsen
2	0	365	0	school	single	none	0		Thüringen
2	365	730	0	no info	single	none	0		Thüringen
:	÷	÷	:	:	:	:	:	÷	:

Motivation: PAIRFAM study

Data basis: Germany's current panel analysis of intimate relationships and family dynamics (**PAIRFAM**), release 4.0 (Nauck et al., 2013; Huinink et al., 2011).

Data	has	to	be	suitably	/ p	repared	and	struct	ured	for	time-to	-event	data	analys	is:
														,	

id	start	stop	child	job	rel.status	religion	siblings		federal state
1	0	365	0	school	single	Christian	1		Niedersachsen
1	365	730	0	no info	single	Christian	1		Niedersachsen
1	730	2499	0	unempl./job-seeking/ housewife	single	Christian	1		Niedersachsen
1	2499	3261	0	full-time/ self-employed	single	Christian	1	•••	Niedersachsen
1	3261	3309	1	full-time/ self-employed	partner	Christian	1		Niedersachsen
2	0	365	0	school	single	none	0		Thüringen
2	365	730	0	no info	single	none	0		Thüringen
:	:	:	:	:	:	:	:	÷	:

Time-varying covariates \implies the 2,501 observations of the regarded women have to be split when time-varying covariates change \implies new data set: 20,550 lines

The Cox frailty model with time-varying effects

- In the Cox frailty model with time-varying effects
- Penalization in Cox frailty models

- In the Cox frailty model with time-varying effects
- Penalization in Cox frailty models
- An application on the PAIRFAM data

- The Cox frailty model with time-varying effects
- Penalization in Cox frailty models
- An application on the PAIRFAM data
- Boosting for Cox frailty models

• The Cox frailty model with time-varying effects

- Penalization in Cox frailty models
- An application on the PAIRFAM data
- Boosting for Cox frailty models

$$\lambda(t|\mathbf{x}_i) = \lambda_0(t) \exp(\mathbf{x}_i^T \boldsymbol{\beta}),$$

- $\lambda(t|\mathbf{x}_i)$: hazard for observation *i* at time *t*, conditionally on the covariates $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^T$
- $\lambda_0(t)$: shared baseline hazard
- β : fixed effects vector

$$\lambda(t|\mathbf{x}_i) = \lambda_0(t) \exp(\mathbf{x}_i^T \boldsymbol{\beta}),$$

- $\lambda(t|\mathbf{x}_i)$: hazard for observation *i* at time *t*, conditionally on the covariates $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^T$
- $\lambda_0(t)$: shared baseline hazard
- β : fixed effects vector
- $\lambda(t|\mathbf{x}_i) \coloneqq \lim_{\Delta t \to 0} P(t \le T < t + \Delta t | T \ge t, \mathbf{x}_i) / \Delta t,$

$$\lambda(t|\mathbf{x}_i) = \lambda_0(t) \exp(\mathbf{x}_i^T \boldsymbol{\beta}),$$

- $\lambda(t|\mathbf{x}_i)$: hazard for observation *i* at time *t*, conditionally on the covariates $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^T$
- $\lambda_0(t)$: shared baseline hazard
- β : fixed effects vector
- $\lambda(t|\mathbf{x}_i) \coloneqq \lim_{\Delta t \to 0} P(t \le T < t + \Delta t | T \ge t, \mathbf{x}_i) / \Delta t,$
- Inference: (usually) maximization of the corresponding partial likelihood

$$\lambda(t|\mathbf{x}_i) = \lambda_0(t) \exp(\mathbf{x}_i^T \boldsymbol{\beta}),$$

- $\lambda(t|\mathbf{x}_i)$: hazard for observation *i* at time *t*, conditionally on the covariates $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^T$
- $\lambda_0(t)$: shared baseline hazard
- β : fixed effects vector
- $\lambda(t|\mathbf{x}_i) \coloneqq \lim_{\Delta t \to 0} P(t \le T < t + \Delta t | T \ge t, \mathbf{x}_i) / \Delta t,$
- Inference: (usually) maximization of the corresponding partial likelihood
- p > n: LASSO (Tibshirani, 1997) extends the likelihood by the penalty term

$$\xi J(\boldsymbol{\beta}) = \xi \sum_{j=1}^{p} |\beta_j|$$

Dependencies within clusters of observations or heterogeneity between clusters:

 $\lambda(t|\mathbf{x}_{ij}, \mathbf{b}_i) = \mathbf{b}_i \lambda_0(t) \exp(\mathbf{x}_{ij}^T \boldsymbol{\beta}),$

with frailties b_i , $i = 1, \ldots, n$, $j = 1, \ldots, N_i$

Dependencies within clusters of observations or heterogeneity between clusters:

 $\lambda(t|\mathbf{x}_{ij}, \mathbf{b}_i) = \mathbf{b}_i \lambda_0(t) \exp(\mathbf{x}_{ij}^T \boldsymbol{\beta}),$

with frailties b_i , $i = 1, \ldots, n$, $j = 1, \ldots, N_i$

• for mathematical convenience: frequently assumed $b_i \sim \Gamma(\cdot)$

Dependencies within clusters of observations or heterogeneity between clusters:

 $\lambda(t|\mathbf{x}_{ij}, \mathbf{b}_i) = \mathbf{b}_i \lambda_0(t) \exp(\mathbf{x}_{ij}^T \boldsymbol{\beta}),$

with frailties b_i , $i = 1, \ldots, n$, $j = 1, \ldots, N_i$

- for mathematical convenience: frequently assumed $b_i \sim \Gamma(\cdot)$
- R-packages: frailtypack (Rondeau et al., 2012), survival (Therneau, 2013), frailtyHL (Do Ha et al., 2012)

Dependencies within clusters of observations or heterogeneity between clusters:

 $\lambda(t|\mathbf{x}_{ij}, \mathbf{b}_i) = \mathbf{b}_i \lambda_0(t) \exp(\mathbf{x}_{ij}^T \boldsymbol{\beta}),$

with frailties b_i , $i = 1, \ldots, n$, $j = 1, \ldots, N_i$

- for mathematical convenience: frequently assumed $b_i \sim \Gamma(\cdot)$
- R-packages: frailtypack (Rondeau et al., 2012), survival (Therneau, 2013), frailtyHL (Do Ha et al., 2012)

With log-normal frailties

$$\lambda(t|\mathbf{x}_{ij}, \mathbf{u}_{ij}, \mathbf{b}_i) = \lambda_0(t) \exp(\mathbf{x}_{ij}^T \boldsymbol{\beta} + \mathbf{u}_{ij}^T \mathbf{b}_i),$$

• $u_{ij} = (u_{ij1}, \dots, u_{ijq})^T$ covariate vector associated with random effects • $b_i \sim N(\mathbf{0}, Q(\theta))$

Incorporate time-varying effects $\gamma_k(t)$:

$$\lambda(t|\boldsymbol{x}_{ij},\boldsymbol{z}_{ij},\boldsymbol{u}_{ij},\boldsymbol{b}_i) = \lambda_0(t) \exp\left(\boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \sum_{k=1}^r z_{ijk} \gamma_k(t) + \boldsymbol{u}_{ij}^T \boldsymbol{b}_i,\right)$$

with covariates z_{ij1}, \ldots, z_{ijr} being associated with time-varying effects.

Incorporate time-varying effects $\gamma_k(t)$:

$$\lambda(t|\boldsymbol{x}_{ij},\boldsymbol{z}_{ij},\boldsymbol{u}_{ij},\boldsymbol{b}_i) = \lambda_0(t) \exp\left(\boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \sum_{k=1}^r z_{ijk} \gamma_k(t) + \boldsymbol{u}_{ij}^T \boldsymbol{b}_i,\right)$$

with covariates z_{ij1}, \ldots, z_{ijr} being associated with time-varying effects. Estimation: expand time-varying effects $\gamma_k(t)$ in B-splines:

$$\gamma_k(t) = \sum_{m=1}^M \alpha_{k,m} B_m(t;d)$$

• $\alpha_{k,m}, m = 1, \dots, M$: unknown spline coefficients

B_m(t; d): m-th B-spline basis function of degree d (see e.g. Eilers & Marx, 1996; Wood, 2017)

With $\gamma_0(t) \coloneqq \log(\lambda_0(t))$ and $z_{ij0} \equiv 1 \ \forall i, j \in I$

$$\lambda(t|\boldsymbol{x}_{ij}, \boldsymbol{z}_{ij}, \boldsymbol{u}_{ij}, \boldsymbol{b}_i) = \exp\left(\frac{\boldsymbol{y}_{ij}(t)}{\boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \sum_{k=0}^r z_{ijk} \left(\sum_{m=1}^M \alpha_{k,m} B_m(t; d)\right) + \boldsymbol{u}_{ij}^T \boldsymbol{b}_i}\right), \quad (1)$$

Now, $\mathbf{z_{ij}} = (1, z_{ij1}, \dots, z_{ijr})^T$ is associated with both baseline hazard and time-varying effects.

With $\gamma_0(t) \coloneqq \log(\lambda_0(t))$ and $z_{ij0} \equiv 1 \ \forall i, j \in I$

$$\lambda(t|\boldsymbol{x}_{ij}, \boldsymbol{z}_{ij}, \boldsymbol{u}_{ij}, \boldsymbol{b}_i) = \exp\left(\frac{\eta_{ij}(t)}{\boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \sum_{k=0}^r z_{ijk} \left(\sum_{m=1}^M \alpha_{k,m} B_m(t; d)\right) + \boldsymbol{u}_{ij}^T \boldsymbol{b}_i}\right), \quad (1)$$

Now, $\mathbf{z_{ij}} = (1, z_{ij1}, \dots, z_{ijr})^T$ is associated with both baseline hazard and time-varying effects.

Estimation of parameters in (1) can be based on Cox's full log-likelihood:

$$I(\boldsymbol{\beta}, \boldsymbol{\alpha}, \boldsymbol{b}) = \sum_{i=1}^{n} \sum_{j=1}^{N_i} d_{ij} \eta_{ij}(t_{ij}) - \int_0^{t_{ij}} \exp(\eta_{ij}(s)) ds,$$
(2)

where *n* denotes the number of clusters, N_i the individual cluster sizes and the event times t_{ij} are complete, if $d_{ij} = 1$ and right censored if $d_{ij} = 0$.

A possible strategy to maximize the full log-likelihood (2) is based on PQL. With $\delta^{T} := (\beta^{T}, \alpha^{T}, \boldsymbol{b}^{T})$, the corresponding **marginal** log-likelihood yields

$$I^{mar}(\boldsymbol{\delta},\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \left(\int L_i(\boldsymbol{\beta},\boldsymbol{\alpha},\boldsymbol{b}_i) p(\boldsymbol{b}_i | \boldsymbol{\theta}) d\boldsymbol{b}_i \right),$$

with random effects density $p(\mathbf{b}_i|\boldsymbol{\theta})$.

A possible strategy to maximize the full log-likelihood (2) is based on PQL. With $\delta^{T} := (\beta^{T}, \alpha^{T}, \boldsymbol{b}^{T})$, the corresponding **marginal** log-likelihood yields

$$I^{mar}(\boldsymbol{\delta},\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \left(\int L_i(\boldsymbol{\beta},\boldsymbol{\alpha},\boldsymbol{b}_i) p(\boldsymbol{b}_i | \boldsymbol{\theta}) d\boldsymbol{b}_i \right),$$

with random effects density $p(\mathbf{b}_i|\boldsymbol{\theta})$.

Laplace approximation along the lines of Breslow & Clayton (1993) yields

$$J^{app}(\boldsymbol{\delta},\boldsymbol{\theta}) = \sum_{i=1}^{n} \log L_i(\boldsymbol{\beta},\boldsymbol{\alpha},\boldsymbol{b}_i) - \frac{1}{2} \boldsymbol{b}^T \boldsymbol{Q}(\boldsymbol{\theta})^{-1} \boldsymbol{b}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{N_i} \left(d_{ij} \eta_{ij}(t_{ij}) - \int_0^{t_{ij}} \exp(\eta_{ij}(s)) ds \right) - \frac{1}{2} \boldsymbol{b}^T \boldsymbol{Q}(\boldsymbol{\theta})^{-1} \boldsymbol{b}.$$

• which covariates should be included in the model?

- which covariates should be included in the model?
- which of those covariates included have a time-varying effect?

- which covariates should be included in the model?
- which of those covariates included have a time-varying effect?

Two strategies:

- which covariates should be included in the model?
- which of those covariates included have a time-varying effect?

Two strategies:

 \implies Penalization

- which covariates should be included in the model?
- which of those covariates included have a time-varying effect?

Two strategies:

- \implies Penalization
- \implies Boosting

• The Cox frailty model with time-varying effects

Penalization in Cox frailty models

An application on the PAIRFAM data

Boosting for Cox frailty models

 \implies incorporate the following penalty into the Cox frailty log-likelihood:

$$\xi \cdot J_{\zeta}(\boldsymbol{\alpha}) = \xi \left(\zeta \sum_{k=1}^{r} \psi_{k} w_{\Delta,k} \| (\vartheta_{k,2}, \dots, \vartheta_{k,M}) \|_{2} + (1-\zeta) \sum_{k=1}^{r} \phi_{k} w_{k} \| \boldsymbol{\alpha}_{k} \|_{2} \right),$$

where $\xi \ge 0$ and $\zeta \in (0,1)$ are tuning parameters and $\vartheta_{k,l} = \alpha_{k,l} - \alpha_{k,l-1}$.

 \implies incorporate the following penalty into the Cox frailty log-likelihood:

$$\xi \cdot J_{\zeta}(\boldsymbol{\alpha}) = \xi \left(\zeta \sum_{k=1}^{r} \psi_{k} w_{\Delta,k} \| (\vartheta_{k,2}, \dots, \vartheta_{k,M}) \|_{2} + (1-\zeta) \sum_{k=1}^{r} \phi_{k} w_{k} \| \boldsymbol{\alpha}_{k} \|_{2} \right),$$

where $\xi \ge 0$ and $\zeta \in (0, 1)$ are tuning parameters and $\vartheta_{k,l} = \alpha_{k,l} - \alpha_{k,l-1}$.

The weights $\psi_k \coloneqq \sqrt{M-1}$ and $\phi_k \coloneqq \sqrt{M}$ assign different amounts of penalization to different parameter groups, relative to the respective group size.

 \implies incorporate the following penalty into the Cox frailty log-likelihood:

$$\xi \cdot J_{\zeta}(\boldsymbol{\alpha}) = \xi \left(\zeta \sum_{k=1}^{r} \psi_{k} w_{\Delta,k} \| (\vartheta_{k,2}, \dots, \vartheta_{k,M}) \|_{2} + (1-\zeta) \sum_{k=1}^{r} \phi_{k} w_{k} \| \boldsymbol{\alpha}_{k} \|_{2} \right),$$

where $\xi \ge 0$ and $\zeta \in (0, 1)$ are tuning parameters and $\vartheta_{k,l} = \alpha_{k,l} - \alpha_{k,l-1}$.

The weights $\psi_k \coloneqq \sqrt{M-1}$ and $\phi_k \coloneqq \sqrt{M}$ assign different amounts of penalization to different parameter groups, relative to the respective group size.

The adaptive weights $w_{\Delta,k} \coloneqq 1/||\hat{\vartheta}_k^{(ML)}||_2$ and $w_k \coloneqq 1/||\hat{\alpha}_k^{(ML)}||_2$ are based on the (slightly ridge-penalized) ML-estimator.

 \implies incorporate the following penalty into the Cox frailty log-likelihood:

$$\xi \cdot J_{\zeta}(\boldsymbol{\alpha}) = \xi \left(\zeta \sum_{k=1}^{r} \psi_{k} w_{\Delta,k} \| (\vartheta_{k,2}, \dots, \vartheta_{k,M}) \|_{2} + (1-\zeta) \sum_{k=1}^{r} \phi_{k} w_{k} \| \boldsymbol{\alpha}_{k} \|_{2} \right),$$

where $\xi \ge 0$ and $\zeta \in (0, 1)$ are tuning parameters and $\vartheta_{k,l} = \alpha_{k,l} - \alpha_{k,l-1}$.

The weights $\psi_k \coloneqq \sqrt{M-1}$ and $\phi_k \coloneqq \sqrt{M}$ assign different amounts of penalization to different parameter groups, relative to the respective group size.

The adaptive weights $w_{\Delta,k} := 1/||\hat{\vartheta}_k^{(ML)}||_2$ and $w_k := 1/||\hat{\alpha}_k^{(ML)}||_2$ are based on the (slightly ridge-penalized) ML-estimator.

Tuning parameters ξ and ζ are chosen by appropriate technique, e.g. K-fold CV.

 \implies incorporate the following penalty into the Cox frailty log-likelihood:

$$\xi \cdot J_{\zeta}(\boldsymbol{\alpha}) = \xi \left(\zeta \sum_{k=1}^{r} \psi_{k} w_{\Delta,k} \| (\vartheta_{k,2}, \dots, \vartheta_{k,M}) \|_{2} + (1-\zeta) \sum_{k=1}^{r} \phi_{k} w_{k} \| \boldsymbol{\alpha}_{k} \|_{2} \right),$$

where $\xi \ge 0$ and $\zeta \in (0, 1)$ are tuning parameters and $\vartheta_{k,l} = \alpha_{k,l} - \alpha_{k,l-1}$.

The weights $\psi_k \coloneqq \sqrt{M-1}$ and $\phi_k \coloneqq \sqrt{M}$ assign different amounts of penalization to different parameter groups, relative to the respective group size.

The adaptive weights $w_{\Delta,k} := 1/||\hat{\vartheta}_k^{(ML)}||_2$ and $w_k := 1/||\hat{\alpha}_k^{(ML)}||_2$ are based on the (slightly ridge-penalized) ML-estimator.

Tuning parameters ξ and ζ are chosen by appropriate technique, e.g. *K*-fold CV. Penalization of baseline hazard:

$$\xi_0 \cdot J_0(\boldsymbol{\alpha_0}) = \xi_0 \left(\sum_{l=2}^{M} (\alpha_{0,l} - \alpha_{0,l-1})^2 \right).$$

Estimation

• maximization of the penalized log-likelihood:

$$I^{pen}(\boldsymbol{\delta}, \boldsymbol{\theta}) = I^{app}(\boldsymbol{\delta}, \boldsymbol{\theta}) - \xi_0 \cdot J_0(\boldsymbol{\alpha_0}) - \xi \cdot J_{\zeta}(\boldsymbol{\alpha}).$$

Estimation

• maximization of the penalized log-likelihood:

$$I^{pen}(\boldsymbol{\delta}, \boldsymbol{\theta}) = I^{app}(\boldsymbol{\delta}, \boldsymbol{\theta}) - \xi_0 \cdot J_0(\boldsymbol{\alpha_0}) - \xi \cdot J_{\zeta}(\boldsymbol{\alpha}).$$

• local quadratic approximations of the penalty terms (Oelker & Tutz, 2017).
• maximization of the penalized log-likelihood:

$$I^{pen}(\boldsymbol{\delta}, \boldsymbol{\theta}) = I^{app}(\boldsymbol{\delta}, \boldsymbol{\theta}) - \xi_0 \cdot J_0(\boldsymbol{\alpha_0}) - \xi \cdot J_{\zeta}(\boldsymbol{\alpha}).$$

• local quadratic approximations of the penalty terms (Oelker & Tutz, 2017).

• maximization of the penalized log-likelihood:

$$I^{pen}(\boldsymbol{\delta}, \boldsymbol{\theta}) = I^{app}(\boldsymbol{\delta}, \boldsymbol{\theta}) - \xi_0 \cdot J_0(\boldsymbol{\alpha_0}) - \xi \cdot J_{\zeta}(\boldsymbol{\alpha}).$$

- local quadratic approximations of the penalty terms (Oelker & Tutz, 2017).
- estimation based on conventional Newton-Raphson

• maximization of the penalized log-likelihood:

$$I^{pen}(\boldsymbol{\delta},\boldsymbol{\theta}) = I^{app}(\boldsymbol{\delta},\boldsymbol{\theta}) - \xi_0 \cdot J_0(\boldsymbol{\alpha_0}) - \xi \cdot J_{\zeta}(\boldsymbol{\alpha}).$$

- local quadratic approximations of the penalty terms (Oelker & Tutz, 2017).
- estimation based on conventional Newton-Raphson

Algorithm PenCoxFrail

• Initialization Choose starting values $\hat{\boldsymbol{\beta}}^{(0)}, \hat{\boldsymbol{\alpha}}^{(0)}, \hat{\boldsymbol{b}}^{(0)}, \hat{\boldsymbol{\theta}}^{(0)}$

• maximization of the penalized log-likelihood:

$$I^{pen}(\boldsymbol{\delta}, \boldsymbol{\theta}) = I^{app}(\boldsymbol{\delta}, \boldsymbol{\theta}) - \xi_0 \cdot J_0(\boldsymbol{\alpha_0}) - \xi \cdot J_{\zeta}(\boldsymbol{\alpha}).$$

- local quadratic approximations of the penalty terms (Oelker & Tutz, 2017).
- estimation based on conventional Newton-Raphson

Algorithm PenCoxFrail

- Initialization Choose starting values \$\hfrac{\phi}{0}\$, \$\\hfrac{\phi}{0}\$, \$\\hfrac{\phi}{0}\$, \$\\hfrac{\phi}{0}\$, \$\\phi}\$, \$\\hfrac{\phi}{0}\$, \$\
 - (a) Computation of parameters for given $\hat{\boldsymbol{\theta}}^{(l-1)}$: Based on the penalized score function $\mathbf{s}^{pen}(\boldsymbol{\delta}) = \partial I^{pen}/\partial \boldsymbol{\delta}$ and information matrix $\mathbf{F}^{pen}(\boldsymbol{\delta})$ the general form of a single Newton-Raphson step is:

$$\hat{\boldsymbol{\delta}}^{(l)} = \hat{\boldsymbol{\delta}}^{(l-1)} + (\mathbf{F}^{pen}(\hat{\boldsymbol{\delta}}^{(l-1)}))^{-1} \mathbf{s}^{pen}(\hat{\boldsymbol{\delta}}^{(l-1)})$$

As the fit is within an iterative procedure it is sufficient to use a single step.

• maximization of the penalized log-likelihood:

$$I^{pen}(\boldsymbol{\delta}, \boldsymbol{\theta}) = I^{app}(\boldsymbol{\delta}, \boldsymbol{\theta}) - \xi_0 \cdot J_0(\boldsymbol{\alpha_0}) - \xi \cdot J_{\zeta}(\boldsymbol{\alpha}).$$

- local quadratic approximations of the penalty terms (Oelker & Tutz, 2017).
- estimation based on conventional Newton-Raphson

Algorithm PenCoxFrail

- Initialization Choose starting values \$\hfrac{\phi}{0}\$, \$\\hfrac{\phi}{0}\$, \$\\hfrac{\phi}{0}\$, \$\\hfrac{\phi}{0}\$, \$\\phi}\$, \$\\hfrac{\phi}{0}\$, \$\
 - (a) Computation of parameters for given $\hat{\boldsymbol{\theta}}^{(l-1)}$: Based on the penalized score function $\mathbf{s}^{pen}(\boldsymbol{\delta}) = \partial I^{pen}/\partial \boldsymbol{\delta}$ and information matrix $\mathbf{F}^{pen}(\boldsymbol{\delta})$ the general form of a single Newton-Raphson step is:

$$\hat{\boldsymbol{\delta}}^{(l)} = \hat{\boldsymbol{\delta}}^{(l-1)} + \big(\mathbf{F}^{\text{pen}}(\hat{\boldsymbol{\delta}}^{(l-1)}) \big)^{-1} \mathbf{s}^{\text{pen}}(\hat{\boldsymbol{\delta}}^{(l-1)})$$

As the fit is within an iterative procedure it is sufficient to use a single step. (b) Computation of variance-covariance components:

Estimates $\hat{\mathbf{Q}}^{(l)}$ are obtained as approximate EM-type estimates, yielding $\hat{\boldsymbol{ heta}}^{(l)}$

• The Cox frailty model with time-varying effects

Penalization in Cox frailty models

An application on the PAIRFAM data

Boosting for Cox frailty models

Data basis: Germany's current panel analysis of intimate relationships and family dynamics (**PAIRFAM**), release 4.0 (Nauck et al., 2013; Huinink et al., 2011).

The data has to be suitably prepared and structured for the event data analysis:

Data basis: Germany's current panel analysis of intimate relationships and family dynamics (**PAIRFAM**), release 4.0 (Nauck et al., 2013; Huinink et al., 2011).

The data has to be suitably prepared and structured for the event data analysis:

id	start	stop	child	job	rel.status	religion	siblings		federal state
1	0	365	0	school	single	Christian	1		Niedersachsen
1	365	730	0	no info	single	Christian	1		Niedersachsen
1	730	2499	0	unempl./job-seeking/ housewife	single	Christian	1		Niedersachsen
1	2499	3261	0	full-time/ self-employed	single	Christian	1	•••	Niedersachsen
1	3261	3309	1	full-time/ self-employed	partner	Christian	1		Niedersachsen
2	0	365	0	school	single	none	0		Thüringen
2	365	730	0	no info	single	none	0		Thüringen
:	:	:	:	:	:	:	:	÷	:

Data basis: Germany's current panel analysis of intimate relationships and family dynamics (**PAIRFAM**), release 4.0 (Nauck et al., 2013; Huinink et al., 2011).

The data has to be suitably prepared and structured for the event data analysis:

id	start	stop	child	job	rel.status	religion	siblings		federal state
1	0	365	0	school	single	Christian	1		Niedersachsen
1	365	730	0	no info	single	Christian	1		Niedersachsen
1	730	2499	0	unempl./job-seeking/ housewife	single	Christian	1		Niedersachsen
1	2499	3261	0	full-time/ self-employed	single	Christian	1	•••	Niedersachsen
1	3261	3309	1	full-time/ self-employed	partner	Christian	1	•••	Niedersachsen
2	0	365	0	school	single	none	0		Thüringen
2	365	730	0	no info	single	none	0		Thüringen
÷	:	:	:	:	:	:	:	÷	:

Time-varying covariates \implies the 2,501 observations of the regarded women have to be split when time-varying covariates change \implies new data set: 20,550 lines

A. Groll et al. (TU Dortmund)

Distribution of time-constant (left) and time-varying (right) covariates in the sample

	proportion		# days	proportion
Religion		Employment status		
Christian	0.667	full-time employed/self-employed	3,369,964	0.276
other	0.040	marginal/part-time employed	405,473	0.033
none	0.293	education	187,972	0.015
		school	2,832,410	0.232
# siblings		unempl./job-seeking/housewife	5,023,955	0.412
no siblings	0.19	no info	388,936	0.032
one sibling	0.43			
two siblings	0.22	Education level		
three or more siblings	0.16	high	7,004,695	0.574
		medium	4,301,786	0.352
Education level of parents		low	837,023	0.069
high	0.271	no info	65,206	0.005
medium	0.061			
low	0.570	Relationship status		
no info	0.098	single	6,463,726	0.529
		partner	3,190,299	0.261
Number of women	2,501	cohabitation	1,842,180	0.151
Number of events	1,591	married	712,505	0.058
		Number of women	2 501	

• regional fertility differences \implies random intercept for the German federal state where the women are born.

- regional fertility differences \implies random intercept for the German federal state where the women are born.
- PenCoxFrail: n > 20 000 ⇒ ad-hoc strategy to determine optimal ξ (Chouldechova & Hastie, 2015; Liu et al., 2007):

• ζ = 0.5

- regional fertility differences \implies random intercept for the German federal state where the women are born.
- PenCoxFrail: n > 20 000 ⇒ ad-hoc strategy to determine optimal ξ (Chouldechova & Hastie, 2015; Liu et al., 2007):

• $\zeta = 0.5$

• include 10 additional simulated noise variables

- regional fertility differences \implies random intercept for the German federal state where the women are born.
- PenCoxFrail: n > 20 000 ⇒ ad-hoc strategy to determine optimal ξ (Chouldechova & Hastie, 2015; Liu et al., 2007):

• $\zeta = 0.5$

- include 10 additional simulated noise variables
- stop right before the first of them enters the model

```
>pencox.obj <- pencoxfrail(Surv(time,event) ~ 1, vary.coef = ~ relat.status + ...,
```

```
rnd = list(fed.state = ~ 1), data = pairfam, xi = 100, control = list(...))
```

```
>pencox.obj <- pencoxfrail(Surv(time,event) ~ 1, vary.coef = ~ relat.status + ...,
```

```
rnd = list(fed.state = ~ 1), data = pairfam, xi = 100, control = list(...))
```

```
>pencox.obj <- pencoxfrail(Surv(time,event) ~ 1, vary.coef = ~ relat.status + ...,
```

```
rnd = list(fed.state = ~ 1), data = pairfam, xi = 100, control = list(...))
```

```
>pencox.obj <- pencoxfrail(Surv(time,event) ~ 1, vary.coef = ~ relat.status + ...,
```

```
rnd = list(fed.state = ~ 1), data = pairfam, xi = 100, control = list(...))
```

```
>pencox.obj <- pencoxfrail(Surv(time,event) ~ 1, vary.coef = ~ relat.status + ...,
```

```
rnd = list(fed.state = ~ 1), data = pairfam, xi = 100, control = list(...))
```

```
>pencox.obj <- pencoxfrail(Surv(time,event) ~ 1, vary.coef = ~ relat.status + ...,
```

```
rnd = list(fed.state = ~ 1), data = pairfam, xi = 100, control = list(...))
```

```
>pencox.obj <- pencoxfrail(Surv(time,event) ~ 1, vary.coef = ~ relat.status + ...,
```

```
rnd = list(fed.state = ~ 1), data = pairfam, xi = 100, control = list(...))
```

Coefficient Built-Ups

original 6 variables (colored solid lines) and simulated noise variables (black dashed lines); horizontal dotted line: chosen tuning parameter $\xi_{48} = 6.09 \log(\xi_{48})$

A. Groll et al. (TU Dortmund)

Estimated Time-Varying Effects

Estimated effect of the categorical covariate "relation ship status" (black solid line) vs. time (women's age in years) at chosen tuning parameter $\xi_{48} = 6.09$.

For comparison, time-constant effects of a conventional Cox model are shown (red solid line) together with 95% confidence interval.

Reference level: "single"

Estimated Time-Varying Effects

Estimated effect of the categorical covariate "education level" (black solid line) vs. time (women's age in years) at the chosen tuning parameter $\xi_{48} = 6.09$.

For comparison, time-constant effects of a conventional Cox model are shown (red solid line) together with 95% confidence interval.

Reference level: "medium"

Estimated Baseline Hazard

Estimated baseline hazard (black solid line) vs. time (women's age in years) at the chosen tuning parameter $\xi_{48} = 6.09$;

For comparison, the estimated baseline hazard of a simple Cox model with time-constant effects is shown (red dashed line)

- The Cox frailty model with time-varying effects
- Penalization in Cox frailty models
- In application on the PAIRFAM data
- Boosting for Cox frailty models

Basic idea:

Fahrmeir et al. (2004): re-parametrization of P-splines \implies split potentially time-varying effect $\gamma(t)$ of a covariate z into

$$\gamma(t) \cdot z = \underbrace{\alpha_0 \cdot z + \alpha_1 t \cdot z + \dots + \alpha_{d-1} t^{d-1} \cdot z}_{\text{(centered)}} + \underbrace{\gamma_{\text{(centered)}}(t) \cdot z}_{\text{(centered)}}.$$

unpenalized part

smooth penalized part

Basic idea:

Fahrmeir et al. (2004): re-parametrization of P-splines \implies split potentially time-varying effect $\gamma(t)$ of a covariate z into

$$\gamma(t) \cdot z = \underbrace{\alpha_0 \cdot z + \alpha_1 t \cdot z + \dots \alpha_{d-1} t^{d-1} \cdot z}_{\text{unpenalized part}} + \underbrace{\gamma_{\text{centered}}(t) \cdot z}_{\text{smooth penalized part}}.$$

(the vector of regression coefficients $\boldsymbol{\alpha}$ is decomposed into $\boldsymbol{\alpha}^T = (\boldsymbol{\alpha}_{unpen}^T, \boldsymbol{\alpha}_{pen}^T)$ using spectral decomposition of the penalty matrix.)

Basic idea:

Fahrmeir et al. (2004): re-parametrization of P-splines \implies split potentially time-varying effect $\gamma(t)$ of a covariate z into

$$\gamma(t) \cdot z = \underbrace{\alpha_0 \cdot z + \alpha_1 t \cdot z + \dots \alpha_{d-1} t^{d-1} \cdot z}_{\text{unpenalized part}} + \underbrace{\gamma_{\text{centered}}(t) \cdot z}_{\text{smooth penalized part}}.$$

(the vector of regression coefficients $\boldsymbol{\alpha}$ is decomposed into $\boldsymbol{\alpha}^{T} = (\boldsymbol{\alpha}_{unpen}^{T}, \boldsymbol{\alpha}_{pen}^{T})$ using spectral decomposition of the penalty matrix.)

We use first order differences (with cubic B-splines):

$$\gamma(t) \cdot z = \alpha_0 \cdot z + \gamma_{\text{centered}}(t) \cdot z , \qquad (3)$$

which simply decomposes the time-varying effect into a linear (time-constant) effect and a smooth time-varying part.

We specify two base-learners for each (potentially) time-varying effect:

- a **linear** base learner, i.e. $\alpha_0 \cdot z$,
- a smooth deviation from linearity, i.e. $\gamma_{\text{centered}}(t) \cdot z$.

We specify two base-learners for each (potentially) time-varying effect:

- a **linear** base learner, i.e. $\alpha_0 \cdot z$,
- a smooth deviation from linearity, i.e. $\gamma_{\text{centered}}(t) \cdot z$.

 \implies a covariate can be included with time-varying or time-constant effects, or can be excluded completely from the model!

We specify two base-learners for each (potentially) time-varying effect:

- a **linear** base learner, i.e. $\alpha_0 \cdot z$,
- a smooth deviation from linearity, i.e. $\gamma_{\text{centered}}(t) \cdot z$.

 \implies a covariate can be included with time-varying or time-constant effects, or can be excluded completely from the model!

For fair comparison: force smooth base-learner $\gamma_{\rm centered}(t)\cdot z$ to exactly one degree of freedom

We specify two base-learners for each (potentially) time-varying effect:

- a **linear** base learner, i.e. $\alpha_0 \cdot z$,
- a smooth deviation from linearity, i.e. $\gamma_{\text{centered}}(t) \cdot z$.

 \implies a covariate can be included with time-varying or time-constant effects, or can be excluded completely from the model!

For fair comparison: force smooth base-learner $\gamma_{\rm centered}(t)\cdot z$ to exactly one degree of freedom

DFs can be derived based on the penalized and unpenalized Fisher information:

$$\mathsf{df} = \mathsf{trace}\left(\mathbf{F} \cdot \left(\mathbf{F} + \xi \cdot \mathsf{diag}(1, \dots, 1)\right)^{-1}\right),\$$

see, e.g., Hofner et al. (2011).

Iterative component-wise boosting procedure

Algorithm CoxFrailBoost

• Initialization Choose starting values $\hat{\boldsymbol{\beta}}^{(0)}, \hat{\boldsymbol{\alpha}}^{(0)}, \hat{\boldsymbol{b}}^{(0)}, \hat{\boldsymbol{\theta}}^{(0)}$

Iterative component-wise boosting procedure

Algorithm CoxFrailBoost

- Initialization Choose starting values $\hat{\boldsymbol{\beta}}^{(0)}, \hat{\boldsymbol{\alpha}}^{(0)}, \hat{\boldsymbol{b}}^{(0)}, \hat{\boldsymbol{\theta}}^{(0)}$
- Iteration For $l = 1, 2, \dots, l_{stop}$:
 - (a) Computation of parameters:

(i) For
$$\tilde{\boldsymbol{\delta}} \coloneqq (\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\alpha}}_{(0)}, \hat{\mathbf{b}})$$
, calculate $\hat{\tilde{\boldsymbol{\delta}}}^{(l)} = \hat{\tilde{\boldsymbol{\delta}}}^{(l-1)} + (\tilde{\mathbf{F}}^{app}(\hat{\boldsymbol{\delta}}^{(l-1)}))^{-1} \tilde{\mathbf{s}}^{app}(\hat{\boldsymbol{\delta}}^{(l-1)});$

Iterative component-wise boosting procedure

Algorithm CoxFrailBoost

- Initialization Choose starting values $\hat{\boldsymbol{\beta}}^{(0)}, \hat{\boldsymbol{\alpha}}^{(0)}, \hat{\boldsymbol{b}}^{(0)}, \hat{\boldsymbol{\theta}}^{(0)}$
- Iteration For $l = 1, 2, ..., l_{stop}$:
 - (a) Computation of parameters:
 - (i) For $\tilde{\boldsymbol{\delta}} \coloneqq (\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\alpha}}_{(0)}, \hat{\mathbf{b}})$, calculate $\hat{\boldsymbol{\delta}}^{(l)} = \hat{\boldsymbol{\delta}}^{(l-1)} + (\tilde{\mathbf{F}}^{app}(\hat{\boldsymbol{\delta}}^{(l-1)}))^{-1} \tilde{\mathbf{s}}^{app}(\hat{\boldsymbol{\delta}}^{(l-1)});$
 - (ii) For $k \in \{1, ..., r\}$ derive score component $s_k^{lin}(\boldsymbol{\delta}) = \partial l^{app} / \partial \alpha_{1,k}$ and information matrix component $F_k^{lin}(\boldsymbol{\delta})$;

$$\implies \hat{\alpha}_{1,k}^{(l)} = \hat{\alpha}_{1,k}^{(l-1)} + s_k^{lin}(\hat{\boldsymbol{\delta}}^{(l-1)}) / F_k^{lin}(\hat{\boldsymbol{\delta}}^{(l-1)})$$
Algorithm CoxFrailBoost

- Initialization Choose starting values $\hat{\boldsymbol{\beta}}^{(0)}, \hat{\boldsymbol{\alpha}}^{(0)}, \hat{\boldsymbol{b}}^{(0)}, \hat{\boldsymbol{\theta}}^{(0)}$
- Iteration For $l = 1, 2, ..., l_{stop}$:
 - (a) Computation of parameters:
 - (i) For $\tilde{\boldsymbol{\delta}} \coloneqq (\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\alpha}}_{(0)}, \hat{\mathbf{b}})$, calculate $\hat{\boldsymbol{\delta}}^{(l)} = \hat{\boldsymbol{\delta}}^{(l-1)} + (\tilde{\mathbf{F}}^{app}(\hat{\boldsymbol{\delta}}^{(l-1)}))^{-1} \tilde{\mathbf{s}}^{app}(\hat{\boldsymbol{\delta}}^{(l-1)});$
 - (ii) For $k \in \{1, ..., r\}$ derive score component $s_k^{lin}(\boldsymbol{\delta}) = \partial l^{app} / \partial \alpha_{1,k}$ and information matrix component $F_k^{lin}(\boldsymbol{\delta})$;

$$\implies \hat{\alpha}_{1,k}^{(l)} = \hat{\alpha}_{1,k}^{(l-1)} + s_k^{lin}(\hat{\boldsymbol{\delta}}^{(l-1)}) / F_k^{lin}(\hat{\boldsymbol{\delta}}^{(l-1)})$$

(iii) For $k \in \{1, ..., r\}$ derive score function $\mathbf{s}_k^{smo}(\boldsymbol{\delta}) = \partial I^{pen} / \partial \boldsymbol{\alpha}_{[-1],k}$ and information matrix $\mathbf{F}_k^{smo}(\boldsymbol{\delta})$;

$$\Longrightarrow \hat{\boldsymbol{\alpha}}_{[-1],k}^{(l)} = \hat{\boldsymbol{\alpha}}_{[-1],k}^{(l-1)} + (\boldsymbol{\mathsf{F}}_{k}^{smo}(\hat{\boldsymbol{\delta}}^{(l-1)}))^{-1} \boldsymbol{\mathsf{s}}_{k}^{smo}(\hat{\boldsymbol{\delta}}^{(l-1)})$$

Algorithm CoxFrailBoost

- Initialization Choose starting values $\hat{\boldsymbol{\beta}}^{(0)}, \hat{\boldsymbol{\alpha}}^{(0)}, \hat{\boldsymbol{b}}^{(0)}, \hat{\boldsymbol{\theta}}^{(0)}$
- lteration For $l = 1, 2, ..., l_{stop}$:
 - (a) Computation of parameters:
 - (i) For $\tilde{\boldsymbol{\delta}} \coloneqq (\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\alpha}}_{(0)}, \hat{\mathbf{b}})$, calculate $\hat{\tilde{\boldsymbol{\delta}}}^{(l)} = \hat{\tilde{\boldsymbol{\delta}}}^{(l-1)} + (\tilde{\mathbf{F}}^{app}(\hat{\boldsymbol{\delta}}^{(l-1)}))^{-1} \tilde{\mathbf{s}}^{app}(\hat{\boldsymbol{\delta}}^{(l-1)});$
 - (ii) For $k \in \{1, ..., r\}$ derive score component $s_k^{lin}(\boldsymbol{\delta}) = \partial l^{app} / \partial \alpha_{1,k}$ and information matrix component $F_k^{lin}(\boldsymbol{\delta})$;

$$\implies \hat{\alpha}_{1,k}^{(l)} = \hat{\alpha}_{1,k}^{(l-1)} + s_k^{lin}(\hat{\boldsymbol{\delta}}^{(l-1)}) / F_k^{lin}(\hat{\boldsymbol{\delta}}^{(l-1)})$$

(iii) For $k \in \{1, ..., r\}$ derive score function $\mathbf{s}_k^{smo}(\boldsymbol{\delta}) = \partial I^{pen} / \partial \boldsymbol{\alpha}_{[-1],k}$ and information matrix $\mathbf{F}_k^{smo}(\boldsymbol{\delta})$;

$$\Longrightarrow \hat{\boldsymbol{\alpha}}_{[-1],k}^{(l)} = \hat{\boldsymbol{\alpha}}_{[-1],k}^{(l-1)} + (\boldsymbol{\mathsf{F}}_{k}^{smo}(\hat{\boldsymbol{\delta}}^{(l-1)}))^{-1} \boldsymbol{\mathsf{s}}_{k}^{smo}(\hat{\boldsymbol{\delta}}^{(l-1)})$$

(b) Selection step:

Select from (ii) and (iii) the component *j* that leads to the best improvement of the likelihood and denote it by $\hat{\alpha}_1^*$ or $\hat{\alpha}_{i-1}^*$, respectively.

(c) Weak update of best predictor:

For $k \in \{1, \ldots, r\}$ and $0 < \nu \le 1$ set

$$\hat{\alpha}_{1,k}^{(l)} = \left\{ \begin{array}{ll} \hat{\alpha}_{1,k}^{(l-1)} & \text{if } k \neq j, \\ \\ \\ \hat{\alpha}_{1,k}^{(l-1)} + \nu \cdot \hat{\alpha}_{1}^{*} & \text{if } k = j, \end{array} \right.$$

and

$$\hat{\boldsymbol{\alpha}}_{[-1],k}^{(l)} = \begin{cases} \hat{\boldsymbol{\alpha}}_{[-1],k}^{(l-1)} & \text{if } k \neq j, \\ \\ \hat{\boldsymbol{\alpha}}_{[-1],k}^{(l-1)} + \nu \cdot \hat{\boldsymbol{\alpha}}_{[-1]}^{*} & \text{if } k = j. \end{cases}$$

(c) Weak update of best predictor:

For $k \in \{1, \ldots, r\}$ and $0 < \nu \le 1$ set

$$\hat{\alpha}_{1,k}^{(l)} = \left\{ \begin{array}{ll} \hat{\alpha}_{1,k}^{(l-1)} & \text{if } k \neq j, \\ \\ \\ \hat{\alpha}_{1,k}^{(l-1)} + \nu \cdot \hat{\alpha}_{1}^{*} & \text{if } k = j, \end{array} \right.$$

and

$$\hat{\boldsymbol{\alpha}}_{[-1],k}^{(l)} = \begin{cases} \hat{\boldsymbol{\alpha}}_{[-1],k}^{(l-1)} & \text{if } k \neq j, \\ \\ \\ \hat{\boldsymbol{\alpha}}_{[-1],k}^{(l-1)} + \nu \cdot \hat{\boldsymbol{\alpha}}_{[-1]}^{*} & \text{if } k = j. \end{cases}$$

(d) Computation of variance-covariance components: Estimates $\hat{\mathbf{Q}}^{(l)}$ are obtained as approximate EM-type estimates, yielding $\hat{\boldsymbol{\theta}}^{(l)}$.

Summary

Conclusions:

• 2 regularization approaches for Cox frailty models with time-varying coefficients and log-normal frailties: **penalization** and **boosting**

- 2 regularization approaches for Cox frailty models with time-varying coefficients and log-normal frailties: **penalization** and **boosting**
- the methods yield flexible and sparse hazard rate models for modeling time-to-event data

- 2 regularization approaches for Cox frailty models with time-varying coefficients and log-normal frailties: **penalization** and **boosting**
- the methods yield flexible and sparse hazard rate models for modeling time-to-event data
- (good performance in simulations)

- 2 regularization approaches for Cox frailty models with time-varying coefficients and log-normal frailties: **penalization** and **boosting**
- the methods yield flexible and sparse hazard rate models for modeling time-to-event data
- (good performance in simulations)
- reasonable estimates in application (at least for the penalty approach)

- 2 regularization approaches for Cox frailty models with time-varying coefficients and log-normal frailties: **penalization** and **boosting**
- the methods yield flexible and sparse hazard rate models for modeling time-to-event data
- (good performance in simulations)
- reasonable estimates in application (at least for the penalty approach)
- boosting looks even more promising and will be faster, because
 - component-wise parts of the algorithm can be parallelized
 - we brute-force the EDFs of each boosting update

 \Rightarrow avoid K-fold CV and use AIC / BIC to determine optimal # of boosting steps

References & Software

Penalization:

- Groll, A., T. Hastie & G. Tutz (2017). Selection of Effects in Cox Frailty Models by Regularization Methods, *Biometrics*, **73(3)**, 846–856.
- Groll, A. (2016). *PenCoxFrail: Regularization in Cox Frailty Models.* R package version 1.0.1.

References & Software

Penalization:

- Groll, A., T. Hastie & G. Tutz (2017). Selection of Effects in Cox Frailty Models by Regularization Methods, *Biometrics*, **73(3)**, 846–856.
- Groll, A. (2016). *PenCoxFrail: Regularization in Cox Frailty Models.* R package version 1.0.1.

Boosting:

- Groll, A., T. Hastie, T. Kneib & G. Tutz (2018). Boosting Methods for Effects Selection in Cox Frailty Models, *Proceedings of the 33rd International Workshop on Statistical Modelling*, (1), 122-127.
- Groll, A. (2018). *CoxFrailBoost: Boosting in Cox Frailty Models.* R package version 0.0, (to appear soon).

The 1st package is available on CRAN (see http://www.r-project.org).

Further References

- Breslow, N. E. & D. G. Clayton (1993). Approximate inference in generalized linear mixed model. *Journal of the American Statistical Association*, **88**, 9–25.
- Chouldechova, A. & Hastie, T. (2015). Generalized additive model selection. *Technical Report*, University of Stanford.
- Do Ha, I., Noh, M. & Lee, Y. (2012). frailtyhl: A package for fitting frailty models with h-likelihood. *The R Journal*, **4(2)**, 28–36.
- Eilers, P. H. C. & Marx, B. D. (1996). Flexible smoothing with B-splines and Penalties. Statistical Science, 11, 89-121.
 - Fahrmeir, L., T. Kneib, and S. Lang (2004). Penalized structured additive regression for space-time data: a Bayesian perspective. *Statistica Sinica* **14**, 731–761.
 - Hofner, B., T. Kneib, W. Hartl, and H. Küchenhoff (2011b). Building Cox-type structured hazard regression models with time-varying effects. *Statistical Modelling* **11(1)**, 3–24.
 - Huinink, J., J. Brüderl, B. Nauck, S. Walper, L. Castiglioni, & M. Feldhaus (2011). Panel analysis of intimate relationships and family dynamics (pairfam): Conceptual framework and design. *Journal of Family Research*, **23**, 77–101.

Further References II

Liu, H., Wasserman, L., Lafferty, J. D., & Ravikumar, P. K. (2007). SpAM: Sparse additive models. In *NIPS*, 1201–1208.

- Nauck, B., J. Brüderl, J. Huinink, & S.Walper (2013). The german family panel (pairfam). *GESIS Data Archive, Cologne.* ZA5678 Data file Version 4.0.0.
- Oelker, M.-R. & Tutz, G. (2017). A uniform framework for the combination of penalties in generalized structured models. Advances in Data Analysis and Classification, 11(1), 97-120.

Rondeau, V., Mazroui, Y. & Gonzalez, J. R. (2012). frailtypack: an R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. *Journal of Statistical Software*, **47(4)**, 1-28.

Therneau, T. M. (2013). A package for survival analysis in S. R package version 2.37-4.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society B 58*, 267–288.

- Tibshirani, R. (1997). The Lasso Method for Variable Selection in the Cox Model. *Statistics in Medicine*, **16**, 385–395.
- Wood, S. N. (2017). *Generalized Additive Models: An Introduction with R* (2nd edition). London: Chapman & Hall.

Determination of Optimal Tuning Parameters

 ξ₀, controlling the smoothness of the log-baseline hazard γ₀(t) = log(λ₀(t)); in general, no complex selection procedure necessary
 ⇒ estimation procedure is already stabilized for a moderate choice of ξ₀.

Determination of Optimal Tuning Parameters

- ξ₀, controlling the smoothness of the log-baseline hazard γ₀(t) = log(λ₀(t)); in general, no complex selection procedure necessary
 ⇒ estimation procedure is already stabilized for a moderate choice of ξ₀.
- ζ and ξ are determined via *K*-fold CV:
 - ξ : controls overall amount of penalization, and hence, both smoothness and variable selection, it is of particular importance \implies use a fine grid
 - ζ : controls apportionment between smoothness and shrinkage \implies rougher grid is sufficient.

Determination of Optimal Tuning Parameters

- ξ₀, controlling the smoothness of the log-baseline hazard γ₀(t) = log(λ₀(t)); in general, no complex selection procedure necessary
 ⇒ estimation procedure is already stabilized for a moderate choice of ξ₀.
- ζ and ξ are determined via *K*-fold CV:
 - ξ: controls overall amount of penalization, and hence, both smoothness and variable selection, it is of particular importance => use a fine grid
 - ζ : controls apportionment between smoothness and shrinkage \implies rougher grid is sufficient.
 - CV error measure: evaluate log-likelihood (2) on the test data, i.e.

$$cve(\hat{\boldsymbol{\delta}}^{\text{train}}) = \sum_{i=1}^{n^{\text{test}}} \sum_{j=1}^{N_i^{\text{test}}} d_{ij}\hat{\eta}_{ij}(t_{ij}) - \int_0^{t_{ij}} \exp(\hat{\eta}_{ij}(s)) ds,$$

where n^{test} denotes the number of clusters in the test data and N_i^{test} the corresponding cluster sizes.

Score function

Let $\mathbf{B}^{T}(t) \coloneqq (B_{1}(t; d), \dots, B_{M}(t; d))$ represent the vector-valued evaluations of the *M* basis functions in *t* and define $\mathbf{\Phi}^{T}(t) \coloneqq (z_{ij0} \cdot \mathbf{B}^{T}(t), z_{ij1} \cdot \mathbf{B}^{T}(t), \dots, z_{ijr} \cdot \mathbf{B}^{T}(t))$. Then, $\mathbf{s}^{pen}(\delta) = \partial l^{pen}(\delta) / \partial \delta$ has vector components

$$\begin{aligned} \mathbf{s}_{\boldsymbol{\beta}}^{pen}(\boldsymbol{\delta}) &= \sum_{i=1}^{n} \sum_{j=1}^{N_i} \mathbf{x}_{ij} \left(d_{ij} - \int_0^{t_{ij}} \exp(\eta_{ij}(s)) ds \right), \\ \mathbf{s}_{\boldsymbol{\alpha}}^{pen}(\boldsymbol{\delta}) &= \sum_{i=1}^{n} \sum_{j=1}^{N_i} \left(d_{ij} \boldsymbol{\Phi}(t_{ij}) - \int_0^{t_{ij}} \exp(\eta_{ij}(s)) \boldsymbol{\Phi}(s) ds \right) - \mathbf{A}_{\xi_{\boldsymbol{\sigma}},\xi,\zeta} \boldsymbol{\alpha}, \\ \mathbf{s}_i^{pen}(\boldsymbol{\delta}) &= \sum_{j=1}^{N_i} \mathbf{u}_{ij} \left(d_{ij} - \int_0^{t_{ij}} \exp(\eta_{ij}(s)) ds \right) - \mathbf{Q}^{-1}(\boldsymbol{\theta}) \mathbf{b}_i, \quad i = 1, \dots, n. \end{aligned}$$

Note here that the linear predictors $\eta_{ij}(t)$ depend on the parameter vector $\boldsymbol{\delta}$. The vectors $\mathbf{s}_{\boldsymbol{\beta}}^{pen}$ and $\mathbf{s}_{\boldsymbol{\alpha}}^{pen}$ have dimension p and (r+1)M, respectively, while the vectors \mathbf{s}_{i}^{pen} are of dimension q.

Penalty matrix

The penalty matrix $\mathbf{A}_{\xi_0,\xi,\zeta}$ is block-diagonal: $\mathbf{A}_{\xi_0,\xi,\zeta} = diag(\mathbf{A}_{\xi_0},\mathbf{A}_{\xi,\zeta})$. The first matrix $\mathbf{A}_{\xi_0} = \xi_0 \mathbf{\Delta}_M^T \mathbf{\Delta}_M$ corresponds to penalization of the squared differences between adjacent spline coefficients α_0 of the baseline hazard. $\mathbf{\Delta}_M$ denotes the $((M-1) \times M)$ -dimensional difference operator matrix of degree one, defined as

$$\boldsymbol{\Delta}_{M} = \left(\begin{array}{cccc} -1 & 1 & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{array} \right)$$

The second penalty matrix $\mathbf{A}_{\xi,\zeta}$ results from local quadratic approximation of penalty $\xi \cdot J_{\zeta}(\alpha)$ (Oelker & Tutz, 2016). It is block-diagonal, i.e. $\mathbf{A}_{\xi,\zeta} = diag(\mathbf{A}_{1,\xi,\zeta},\ldots,\mathbf{A}_{r,\xi,\zeta})$, for $k = 1,\ldots,r$ the single blocks have the form

$$\mathbf{A}_{k,\xi,\zeta} = \xi \left(\zeta \psi_k (\boldsymbol{\alpha}_k^T \tilde{\boldsymbol{\Delta}}_M^T \tilde{\boldsymbol{\Delta}}_M \boldsymbol{\alpha}_k + c)^{-1/2} \tilde{\boldsymbol{\Delta}}_M^T \tilde{\boldsymbol{\Delta}}_M + (1-\zeta) \phi_k (\boldsymbol{\alpha}_k^T \boldsymbol{\alpha}_k + c)^{-1/2} \right),$$

where c is a small positive number (e.g. $c \approx 10^{-5}$), $\boldsymbol{\alpha}_{k}^{T} = (\alpha_{k,1}, \ldots, \alpha_{k,M})$ contains all spline coefficients corresponding to the k-th time-varying effect and the matrix $\tilde{\boldsymbol{\Delta}}_{M}$ is equal to $\boldsymbol{\Delta}_{M}$, except that its first row consist of zeros only.

Information matrix

$$\begin{split} \mathbf{F}^{pen}(\boldsymbol{\delta}) &= \begin{bmatrix} \mathbf{F}_{\boldsymbol{\beta}\boldsymbol{\beta}} & \mathbf{F}_{\boldsymbol{\beta}\boldsymbol{\alpha}} & \mathbf{F}_{\boldsymbol{\beta}1} & \mathbf{F}_{\boldsymbol{\beta}2} & \dots & \mathbf{F}_{\boldsymbol{\beta}n} \\ \mathbf{F}_{\boldsymbol{\alpha}\boldsymbol{\beta}} & \mathbf{F}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} & \mathbf{F}_{\boldsymbol{\alpha}1} & \mathbf{F}_{\boldsymbol{\alpha}2} & \dots & \mathbf{F}_{\boldsymbol{\alpha}n} \\ \mathbf{F}_{1\boldsymbol{\beta}} & \mathbf{F}_{1\boldsymbol{\alpha}} & \mathbf{F}_{11} & 0 & \dots & 0 \\ \mathbf{F}_{2\boldsymbol{\beta}} & \mathbf{F}_{2\boldsymbol{\alpha}} & 0 & \mathbf{F}_{22} & 0 \\ \vdots & \vdots & \vdots & \ddots & \\ \mathbf{F}_{\boldsymbol{n}\boldsymbol{\beta}} & \mathbf{F}_{\boldsymbol{n}\boldsymbol{\alpha}} & 0 & 0 & \mathbf{F}_{\boldsymbol{n}n} \end{bmatrix}, & \text{with} \\ \end{split}$$

$$\begin{aligned} \mathbf{F}_{\boldsymbol{\beta}\boldsymbol{\beta}} &= -\frac{\partial^{2} |p^{en}(\boldsymbol{\delta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{T}} &= -\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} \mathbf{x}_{ij} \mathbf{x}_{ij}^{T} \int_{0}^{t_{ij}} \exp(\eta_{ij}(s)) ds, \\ \mathbf{F}_{\boldsymbol{\beta}\boldsymbol{\alpha}} &= \mathbf{F}_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{T} &= -\frac{\partial^{2} |p^{en}(\boldsymbol{\delta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\alpha}^{T}} &= -\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} \mathbf{x}_{ij} \int_{0}^{t_{ij}} \exp(\eta_{ij}(s)) \Phi^{T}(s) ds, \\ \mathbf{F}_{\boldsymbol{\alpha}\boldsymbol{\alpha}} &= -\frac{\partial^{2} |p^{en}(\boldsymbol{\delta})}{\partial \boldsymbol{\alpha} \partial \boldsymbol{\alpha}^{T}} &= -\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} \int_{0}^{t_{ij}} \exp(\eta_{ij}(s)) \Phi(s) \Phi^{T}(s) ds + \mathbf{A}_{\xi_{\mathbf{0}},\xi,\zeta}; \\ \mathbf{F}_{\boldsymbol{\beta}i} &= \mathbf{F}_{i\boldsymbol{\beta}}^{T} &= -\frac{\partial^{2} |p^{en}(\boldsymbol{\delta})}{\partial \boldsymbol{\beta} \partial \mathbf{b}_{i}^{T}} &= -\sum_{j=1}^{N_{i}} \mathbf{x}_{ij} \mathbf{J}_{0}^{t_{ij}} \exp(\eta_{ij}(s)) ds, \\ \mathbf{F}_{\boldsymbol{\alpha}i} &= \mathbf{F}_{i\boldsymbol{\alpha}}^{T} &= -\frac{\partial^{2} |p^{en}(\boldsymbol{\delta})}{\partial \boldsymbol{\alpha} \partial \mathbf{b}_{i}^{T}} &= -\sum_{j=1}^{N_{i}} \mathbf{u}_{ij}^{T} \int_{0}^{t_{ij}} \exp(\eta_{ij}(s)) \Phi(s) ds, \\ \mathbf{F}_{\alpha i} &= \mathbf{F}_{i\boldsymbol{\alpha}}^{T} &= -\frac{\partial^{2} |p^{en}(\boldsymbol{\delta})}{\partial \boldsymbol{\alpha} \partial \mathbf{b}_{i}^{T}} &= -\sum_{j=1}^{N_{i}} \mathbf{u}_{ij}^{T} \int_{0}^{t_{ij}} \exp(\eta_{ij}(s)) \Phi(s) ds, \\ \mathbf{F}_{\alpha i} &= -\frac{\partial^{2} |p^{en}(\boldsymbol{\delta})}{\partial \boldsymbol{\alpha} \partial \mathbf{b}_{i}^{T}} &= -\sum_{j=1}^{N_{i}} \mathbf{u}_{ij}^{T} \int_{0}^{t_{ij}} \exp(\eta_{ij}(s)) \Phi(s) ds, \\ \mathbf{F}_{ii} &= -\frac{\partial^{2} |p^{en}(\boldsymbol{\delta})}{\partial \mathbf{b}_{i} \partial \mathbf{b}_{i}^{T}} &= -\sum_{j=1}^{N_{i}} \mathbf{u}_{ij}^{T} \int_{0}^{t_{ij}} \exp(\eta_{ij}(s)) ds + \mathbf{Q}^{-1}. \end{aligned}$$

A. Groll et al. (TU Dortmund)

Variance-Covariance Components

With $\tilde{\boldsymbol{\beta}}^{\mathsf{T}} \coloneqq (\boldsymbol{\beta}^{\mathsf{T}}, \boldsymbol{\alpha}^{\mathsf{T}})$, we get the simpler block structure

$$\mathbf{F}^{pen}(\boldsymbol{\delta}) = \begin{bmatrix} \mathbf{F}_{\tilde{\boldsymbol{\beta}}\tilde{\boldsymbol{\beta}}} & \mathbf{F}_{\tilde{\boldsymbol{\beta}}1} & \dots & \mathbf{F}_{\tilde{\boldsymbol{\beta}}n} \\ \mathbf{F}_{1\tilde{\boldsymbol{\beta}}} & \mathbf{F}_{11} & 0 \\ \vdots & \ddots & \vdots \\ \mathbf{F}_{n\tilde{\boldsymbol{\beta}}} & 0 & \mathbf{F}_{nn} \end{bmatrix}$$

If the cluster sizes N_i are large enough: $\hat{\delta} \stackrel{a}{\sim} N(\delta, \mathsf{F}^{pen}(\hat{\delta})^{-1})$

Hence, the (expected) curvature of $I^{pen}(\hat{\delta})$ evaluated at the posterior mode, i.e. $\mathbf{F}^{pen}(\hat{\delta})^{-1}$, is a good approximation to the covariance matrix. Then, using standard formulas for inverting partitioned matrices, the required posterior curvatures \mathbf{V}_{ii} can be derived via the formula

$$\mathbf{V}_{ii} = \mathbf{F}_{ii}^{-1} + \mathbf{F}_{ii}^{-1} \mathbf{F}_{i\tilde{\boldsymbol{\beta}}} (\mathbf{F}_{\tilde{\boldsymbol{\beta}}\tilde{\boldsymbol{\beta}}} - \sum_{i=1}^{n} \mathbf{F}_{\tilde{\boldsymbol{\beta}}i} \mathbf{F}_{ii}^{-1} \mathbf{F}_{i\tilde{\boldsymbol{\beta}}})^{-1} \mathbf{F}_{\tilde{\boldsymbol{\beta}}i} \mathbf{F}_{ii}^{-1}.$$

Now, $\hat{\boldsymbol{Q}}^{(\prime)}$ can be computed by

$$\hat{\mathbf{Q}}^{(l)} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\mathbf{V}}_{ii}^{(l)} + \hat{\mathbf{b}}_{i}^{(l)} \left(\hat{\mathbf{b}}_{i}^{(l)} \right)^{T} \right)$$