
Automated effects selection via regularization in Cox
frailty models

Andreas Groll∗ Trevor Hastie Thomas Kneib Gerhard Tutz

∗Department of Statistics,
TU Dortmund University

Research Seminar Summer Term 2024
WU Vienna, Institute for Statistics and Mathematics

June 14th 2024

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 1 / 31



Motivation: PAIRFAM study

Data basis: Germany’s current panel analysis of intimate relationships and family
dynamics (PAIRFAM), release 4.0 (Nauck et al., 2013; Huinink et al., 2011).

Data has to be suitably prepared and structured for time-to-event data analysis:

id start stop child job rel.status religion siblings . . . federal state
1 0 365 0 school single Christian 1 . . . Niedersachsen

1 365 730 0 no info single Christian 1 . . . Niedersachsen

1 730 2499 0 unempl./job-seeking/ single Christian 1 . . . Niedersachsen
housewife

1 2499 3261 0 full-time/ single Christian 1 . . . Niedersachsen
self-employed

1 3261 3309 1 full-time/ partner Christian 1 . . . Niedersachsen
self-employed

2 0 365 0 school single none 0 . . . Thüringen

2 365 730 0 no info single none 0 . . . Thüringen
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Time-varying covariates Ô⇒ the 2,501 observations of the regarded women have
to be split when time-varying covariates change Ô⇒ new data set: 20,550 lines
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Outline

1 The Cox frailty model with time-varying effects

2 Penalization in Cox frailty models

3 An application on the PAIRFAM data

4 Boosting for Cox frailty models

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 3 / 31



Outline

1 The Cox frailty model with time-varying effects

2 Penalization in Cox frailty models

3 An application on the PAIRFAM data

4 Boosting for Cox frailty models

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 3 / 31



Outline

1 The Cox frailty model with time-varying effects

2 Penalization in Cox frailty models

3 An application on the PAIRFAM data

4 Boosting for Cox frailty models

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 3 / 31



Outline

1 The Cox frailty model with time-varying effects

2 Penalization in Cox frailty models

3 An application on the PAIRFAM data

4 Boosting for Cox frailty models

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 3 / 31



Outline

1 The Cox frailty model with time-varying effects

2 Penalization in Cox frailty models

3 An application on the PAIRFAM data

4 Boosting for Cox frailty models

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 4 / 31



Introduction: The Cox Model

Cox model with semi-parametric hazard:

λ(t ∣xixixi) = λ0(t) exp(xxxTi βββ),

λ(t ∣xixixi): hazard for observation i at time t, conditionally on the covariates
xixixi = (xi1, . . . , xip)T

λ0(t): shared baseline hazard

βββ: fixed effects vector

λ(t ∣xxx i) ∶= lim
∆t→0

P(t ≤ T < t +∆t ∣T ≥ t,xxx i)/∆t,

Inference: (usually) maximization of the corresponding partial likelihood

p > n: LASSO (Tibshirani, 1997) extends the likelihood by the penalty term

ξ J(βββ) = ξ
p

∑
j=1
∣βj ∣

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 5 / 31



Introduction: The Cox Model

Cox model with semi-parametric hazard:

λ(t ∣xixixi) = λ0(t) exp(xxxTi βββ),

λ(t ∣xixixi): hazard for observation i at time t, conditionally on the covariates
xixixi = (xi1, . . . , xip)T

λ0(t): shared baseline hazard

βββ: fixed effects vector

λ(t ∣xxx i) ∶= lim
∆t→0

P(t ≤ T < t +∆t ∣T ≥ t,xxx i)/∆t,

Inference: (usually) maximization of the corresponding partial likelihood

p > n: LASSO (Tibshirani, 1997) extends the likelihood by the penalty term

ξ J(βββ) = ξ
p

∑
j=1
∣βj ∣

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 5 / 31



Introduction: The Cox Model

Cox model with semi-parametric hazard:

λ(t ∣xixixi) = λ0(t) exp(xxxTi βββ),

λ(t ∣xixixi): hazard for observation i at time t, conditionally on the covariates
xixixi = (xi1, . . . , xip)T

λ0(t): shared baseline hazard

βββ: fixed effects vector

λ(t ∣xxx i) ∶= lim
∆t→0

P(t ≤ T < t +∆t ∣T ≥ t,xxx i)/∆t,

Inference: (usually) maximization of the corresponding partial likelihood

p > n: LASSO (Tibshirani, 1997) extends the likelihood by the penalty term

ξ J(βββ) = ξ
p

∑
j=1
∣βj ∣

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 5 / 31



Introduction: The Cox Model

Cox model with semi-parametric hazard:

λ(t ∣xixixi) = λ0(t) exp(xxxTi βββ),

λ(t ∣xixixi): hazard for observation i at time t, conditionally on the covariates
xixixi = (xi1, . . . , xip)T

λ0(t): shared baseline hazard

βββ: fixed effects vector

λ(t ∣xxx i) ∶= lim
∆t→0

P(t ≤ T < t +∆t ∣T ≥ t,xxx i)/∆t,

Inference: (usually) maximization of the corresponding partial likelihood

p > n: LASSO (Tibshirani, 1997) extends the likelihood by the penalty term

ξ J(βββ) = ξ
p

∑
j=1
∣βj ∣

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 5 / 31



Introduction: The Cox Frailty Model

Dependencies within clusters of observations or heterogeneity between clusters:

λ(t ∣xxx ij ,bi) = biλ0(t) exp(xxxTij βββ),

with frailties bi , i = 1, . . . ,n, j = 1, . . . ,Ni

for mathematical convenience: frequently assumed bi ∼ Γ(⋅)

R-packages: frailtypack (Rondeau et al., 2012), survival (Therneau,
2013), frailtyHL (Do Ha et al., 2012)

With log-normal frailties

λ(t ∣xxx ij ,uuuij ,bbbi) = λ0(t) exp(xxxTij βββ + uuuTij bbbi),

uijuijuij = (uij1, . . . ,uijq)T covariate vector associated with random effects

bbbi ∼ N(000,QQQ(θθθ))
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Cox Frailty Model with Time-Varying Coefficients

Incorporate time-varying effects γk(t):

λ(t ∣xxx ij ,zzz ij ,uuuij ,bbbi) = λ0(t) exp(xxxTij βββ +
r

∑
k=1

zijkγk(t) + uuuTij bbbi ,)

with covariates zij1, . . . , zijr being associated with time-varying effects.

Estimation: expand time-varying effects γk(t) in B-splines:

γk(t) =
M

∑
m=1

αk,mBm(t;d)

αk,m,m = 1, . . . ,M: unknown spline coefficients

Bm(t;d): m-th B-spline basis function of degree d (see e.g. Eilers & Marx,
1996; Wood, 2017)
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Cox Frailty Model with Time-Varying Coefficients

With γ0(t) ∶= log(λ0(t)) and zij0 = 1 ∀i , j ∶

λ(t ∣xxx ij ,zzz ij ,uuuij ,bbbi) = exp

⎛
⎜⎜⎜⎜⎜⎜
⎝

ηij(t)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

xxxTij βββ +
r

∑
k=0

zijk (
M

∑
m=1

αk,mBm(t;d)) + uuuTij bbbi

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (1)

Now, zijzijzij = (1, zij1, . . . , zijr)T is associated with both baseline hazard and
time-varying effects.

Estimation of parameters in (1) can be based on Cox’s full log-likelihood:

l(βββ,ααα,bbb) =
n

∑
i=1

Ni

∑
j=1

dijηij(tij) − ∫
tij

0
exp(ηij(s))ds, (2)

where n denotes the number of clusters, Ni the individual cluster sizes and the
event times tij are complete, if dij = 1 and right censored if dij = 0.
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Cox Frailty Model with Time-Varying Coefficients

A possible strategy to maximize the full log-likelihood (2) is based on PQL.

With δδδT ∶= (βββT ,αααT ,bbbT ), the corresponding marginal log-likelihood yields

lmar(δδδ,θθθ) =
n

∑
i=1

log (∫ Li(βββ,ααα,bbbi)p(bbbi ∣θθθ)dbbbi) ,

with random effects density p(bbbi ∣θθθ).

Laplace approximation along the lines of Breslow & Clayton (1993) yields

lapp(δδδ,θθθ) =
n

∑
i=1

logLi(βββ,ααα,bbbi) −
1
2
bbbTQQQ(θθθ)−1bbb

=
n

∑
i=1

Ni

∑
j=1
(dijηij(tij) − ∫

tij

0
exp(ηij(s))ds) −

1
2
bbbTQQQ(θθθ)−1bbb .

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 9 / 31



Cox Frailty Model with Time-Varying Coefficients

A possible strategy to maximize the full log-likelihood (2) is based on PQL.

With δδδT ∶= (βββT ,αααT ,bbbT ), the corresponding marginal log-likelihood yields

lmar(δδδ,θθθ) =
n

∑
i=1

log (∫ Li(βββ,ααα,bbbi)p(bbbi ∣θθθ)dbbbi) ,

with random effects density p(bbbi ∣θθθ).

Laplace approximation along the lines of Breslow & Clayton (1993) yields

lapp(δδδ,θθθ) =
n

∑
i=1

logLi(βββ,ααα,bbbi) −
1
2
bbbTQQQ(θθθ)−1bbb

=
n

∑
i=1

Ni

∑
j=1
(dijηij(tij) − ∫

tij

0
exp(ηij(s))ds) −

1
2
bbbTQQQ(θθθ)−1bbb .

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 9 / 31



Regularization via penalization

Major questions of model selection:

which covariates should be included in the model?

which of those covariates included have a time-varying effect?

Two strategies:

Ô⇒ Penalization

Ô⇒ Boosting
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Penalization (Groll, Hastie and Tutz, 2017)

Ô⇒ incorporate the following penalty into the Cox frailty log-likelihood:

ξ ⋅ Jζ(ααα) = ξ (ζ
r

∑
k=1

ψkw∆,k ∣∣(ϑk,2, . . . , ϑk,M)∣∣2 + (1 − ζ)
r

∑
k=1

φkwk ∣∣αααk ∣∣2) ,

where ξ ≥ 0 and ζ ∈ (0,1) are tuning parameters and ϑk,l = αk,l − αk,l−1.

The weights ψk ∶=
√
M − 1 and φk ∶=

√
M assign different amounts of penalization

to different parameter groups, relative to the respective group size.

The adaptive weights w∆,k ∶= 1/∣∣ϑ̂ϑϑ
(ML)
k ∣∣2 and wk ∶= 1/∣∣α̂αα(ML)

k ∣∣2 are based on the
(slightly ridge-penalized) ML-estimator.

Tuning parameters ξ and ζ are chosen by appropriate technique, e.g. K -fold CV.

Penalization of baseline hazard:

ξ0 ⋅ J0(α0α0α0) = ξ0 (
M

∑
l=2
(α0,l − α0,l−1)2) .

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 12 / 31



Penalization (Groll, Hastie and Tutz, 2017)

Ô⇒ incorporate the following penalty into the Cox frailty log-likelihood:

ξ ⋅ Jζ(ααα) = ξ (ζ
r

∑
k=1

ψkw∆,k ∣∣(ϑk,2, . . . , ϑk,M)∣∣2 + (1 − ζ)
r

∑
k=1

φkwk ∣∣αααk ∣∣2) ,

where ξ ≥ 0 and ζ ∈ (0,1) are tuning parameters and ϑk,l = αk,l − αk,l−1.

The weights ψk ∶=
√
M − 1 and φk ∶=

√
M assign different amounts of penalization

to different parameter groups, relative to the respective group size.

The adaptive weights w∆,k ∶= 1/∣∣ϑ̂ϑϑ
(ML)
k ∣∣2 and wk ∶= 1/∣∣α̂αα(ML)

k ∣∣2 are based on the
(slightly ridge-penalized) ML-estimator.

Tuning parameters ξ and ζ are chosen by appropriate technique, e.g. K -fold CV.

Penalization of baseline hazard:

ξ0 ⋅ J0(α0α0α0) = ξ0 (
M

∑
l=2
(α0,l − α0,l−1)2) .

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 12 / 31



Penalization (Groll, Hastie and Tutz, 2017)

Ô⇒ incorporate the following penalty into the Cox frailty log-likelihood:

ξ ⋅ Jζ(ααα) = ξ (ζ
r

∑
k=1

ψkw∆,k ∣∣(ϑk,2, . . . , ϑk,M)∣∣2 + (1 − ζ)
r

∑
k=1

φkwk ∣∣αααk ∣∣2) ,

where ξ ≥ 0 and ζ ∈ (0,1) are tuning parameters and ϑk,l = αk,l − αk,l−1.

The weights ψk ∶=
√
M − 1 and φk ∶=

√
M assign different amounts of penalization

to different parameter groups, relative to the respective group size.

The adaptive weights w∆,k ∶= 1/∣∣ϑ̂ϑϑ
(ML)
k ∣∣2 and wk ∶= 1/∣∣α̂αα(ML)

k ∣∣2 are based on the
(slightly ridge-penalized) ML-estimator.

Tuning parameters ξ and ζ are chosen by appropriate technique, e.g. K -fold CV.

Penalization of baseline hazard:

ξ0 ⋅ J0(α0α0α0) = ξ0 (
M

∑
l=2
(α0,l − α0,l−1)2) .

A. Groll et al. (TU Dortmund) Effect Selection in Cox Frailty Models 12 / 31



Penalization (Groll, Hastie and Tutz, 2017)

Ô⇒ incorporate the following penalty into the Cox frailty log-likelihood:

ξ ⋅ Jζ(ααα) = ξ (ζ
r

∑
k=1

ψkw∆,k ∣∣(ϑk,2, . . . , ϑk,M)∣∣2 + (1 − ζ)
r

∑
k=1

φkwk ∣∣αααk ∣∣2) ,

where ξ ≥ 0 and ζ ∈ (0,1) are tuning parameters and ϑk,l = αk,l − αk,l−1.

The weights ψk ∶=
√
M − 1 and φk ∶=

√
M assign different amounts of penalization

to different parameter groups, relative to the respective group size.

The adaptive weights w∆,k ∶= 1/∣∣ϑ̂ϑϑ
(ML)
k ∣∣2 and wk ∶= 1/∣∣α̂αα(ML)

k ∣∣2 are based on the
(slightly ridge-penalized) ML-estimator.
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Estimation

● maximization of the penalized log-likelihood:

lpen(δδδ,θθθ) = lapp(δδδ,θθθ) − ξ0 ⋅ J0(α0α0α0) − ξ ⋅ Jζ(ααα).

● local quadratic approximations of the penalty terms (Oelker & Tutz, 2017).
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● estimation based on conventional Newton-Raphson

Algorithm PenCoxFrail

1 Initialization Choose starting values β̂ββ
(0)
, α̂αα(0), b̂

(0)
, θ̂θθ
(0)

2 Iteration For l = 1,2, . . . until convergence:

(a) Computation of parameters for given θ̂θθ
(l−1)

:
Based on the penalized score function spen(δδδ) = ∂lpen/∂δδδ and information
matrix Fpen

(δδδ) the general form of a single Newton-Raphson step is:

δ̂δδ
(l)

= δ̂δδ
(l−1)

+ (Fpen
(δ̂δδ

(l−1)
))
−1spen(δ̂δδ

(l−1)
).

As the fit is within an iterative procedure it is sufficient to use a single step.
(b) Computation of variance-covariance components:

Estimates Q̂
(l)

are obtained as approximate EM-type estimates, yielding θ̂θθ
(l)
.
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1 The Cox frailty model with time-varying effects

2 Penalization in Cox frailty models

3 An application on the PAIRFAM data

4 Boosting for Cox frailty models
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Application: PAIRFAM
Data

Data basis: Germany’s current panel analysis of intimate relationships and family
dynamics (PAIRFAM), release 4.0 (Nauck et al., 2013; Huinink et al., 2011).

The data has to be suitably prepared and structured for the event data analysis:

id start stop child job rel.status religion siblings . . . federal state
1 0 365 0 school single Christian 1 . . . Niedersachsen

1 365 730 0 no info single Christian 1 . . . Niedersachsen

1 730 2499 0 unempl./job-seeking/ single Christian 1 . . . Niedersachsen
housewife

1 2499 3261 0 full-time/ single Christian 1 . . . Niedersachsen
self-employed

1 3261 3309 1 full-time/ partner Christian 1 . . . Niedersachsen
self-employed

2 0 365 0 school single none 0 . . . Thüringen

2 365 730 0 no info single none 0 . . . Thüringen
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Time-varying covariates Ô⇒ the 2,501 observations of the regarded women have
to be split when time-varying covariates change Ô⇒ new data set: 20,550 lines
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Application: PAIRFAM
Distribution of time-constant (left) and time-varying (right) covariates in the sample

proportion

Religion
Christian 0.667
other 0.040
none 0.293

# siblings
no siblings 0.19
one sibling 0.43
two siblings 0.22
three or more siblings 0.16

Education level of parents
high 0.271
medium 0.061
low 0.570
no info 0.098

Number of women 2,501
Number of events 1,591

# days proportion

Employment status
full-time employed/self-employed 3,369,964 0.276
marginal/part-time employed 405,473 0.033
education 187,972 0.015
school 2,832,410 0.232
unempl./job-seeking/housewife 5,023,955 0.412
no info 388,936 0.032

Education level
high 7,004,695 0.574
medium 4,301,786 0.352
low 837,023 0.069
no info 65,206 0.005

Relationship status
single 6,463,726 0.529
partner 3,190,299 0.261
cohabitation 1,842,180 0.151
married 712,505 0.058

Number of women 2,501
Number of events 1,591
Number of days 12,208,710
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Application: PAIRFAM
Model Fit

regional fertility differences Ô⇒ random intercept for the German federal
state where the women are born.

PenCoxFrail: n > 20000 Ô⇒ ad-hoc strategy to determine optimal ξ
(Chouldechova & Hastie, 2015; Liu et al., 2007):

ζ = 0.5

include 10 additional simulated noise variables

stop right before the first of them enters the model
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Implementation

Call in R using the package PenCoxFrail:
>pencox.obj <- pencoxfrail(Surv(time,event) ∼ 1, vary.coef = ∼ relat.status + ...,

rnd = list(fed.state = ∼ 1), data = pairfam, xi = 100, control = list(...))
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Application: PAIRFAM
Coefficient Built-Ups

original 6 variables (colored solid lines) and simulated noise variables (black
dashed lines); horizontal dotted line: chosen tuning parameter ξ48 = 6.09
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Application: PAIRFAM
Estimated Time-Varying Effects

Estimated effect of the categorical covariate “relation ship status” (black solid
line) vs. time (women’s age in years) at chosen tuning parameter ξ48 = 6.09.

For comparison, time-constant effects of a conventional Cox model are shown (red
solid line) together with 95% confidence interval.
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Application: PAIRFAM
Estimated Time-Varying Effects

Estimated effect of the categorical covariate “education level” (black solid line) vs.
time (women’s age in years) at the chosen tuning parameter ξ48 = 6.09.

For comparison, time-constant effects of a conventional Cox model are shown (red
solid line) together with 95% confidence interval.
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Application: PAIRFAM
Estimated Baseline Hazard

Estimated baseline hazard (black solid line) vs. time (women’s age in years) at the
chosen tuning parameter ξ48 = 6.09;

For comparison, the estimated baseline hazard of a simple Cox model with
time-constant effects is shown (red dashed line)
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Heterogeneity between German federal states: σ̂b = 0.179 (0.179 for simple Cox)
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Boosting

Basic idea:

Fahrmeir et al. (2004): re-parametrization of P-splines Ô⇒ split potentially
time-varying effect γ(t) of a covariate z into

γ(t) ⋅ z = α0 ⋅ z + α1t ⋅ z + . . . αd−1t
d−1 ⋅ z

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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.

(the vector of regression coefficients ααα is decomposed into αααT = (αααT
unpen,ααα

T
pen)

using spectral decomposition of the penalty matrix.)

We use first order differences (with cubic B-splines):

γ(t) ⋅ z = α0 ⋅ z + γcentered(t) ⋅ z , (3)

which simply decomposes the time-varying effect into a linear (time-constant)
effect and a smooth time-varying part.
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Boosting

Effects selection:

We specify two base-learners for each (potentially) time-varying effect:
a linear base learner, i.e. α0 ⋅ z ,
a smooth deviation from linearity, i.e. γcentered(t) ⋅ z .

Ô⇒ a covariate can be included with time-varying or time-constant effects, or can
be excluded completely from the model!

For fair comparison: force smooth base-learner γcentered(t) ⋅ z to exactly one
degree of freedom

DFs can be derived based on the penalized and unpenalized Fisher information:

df = trace (F ⋅ (F + ξ ⋅ diag(1, . . . ,1))−1) ,

see, e.g., Hofner et al. (2011).
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Iterative component-wise boosting procedure

Algorithm CoxFrailBoost

1 Initialization Choose starting values β̂ββ
(0)
, α̂αα(0), b̂

(0)
, θ̂θθ
(0)

2 Iteration For l = 1,2, . . . , lstop :

(a) Computation of parameters:

(i) For δ̃δδ ∶= (β̂ββ, α̂αα
(0), b̂), calculate

ˆ̃
δδδ(l) = ˆ̃

δδδ(l−1) + (F̃app(δ̂δδ(l−1)))−1 s̃app(δ̂δδ(l−1));

(ii) For k ∈ {1, . . . , r} derive score component s link (δδδ) = ∂lapp/∂α1,k and information
matrix component F lin

k (δδδ);

Ô⇒ α̂
(l)
1,k = α̂

(l−1)
1,k + s link (δ̂δδ

(l−1))/F lin
k (δ̂δδ

(l−1))

(iii) For k ∈ {1, . . . , r} derive score function ssmo
k (δδδ) = ∂lpen/∂ααα

[−1],k and information
matrix Fsmo

k (δδδ);

Ô⇒ α̂αα
(l)

[−1],k = α̂αα
(l−1)
[−1],k + (F

smo
k (δ̂δδ(l−1)))−1ssmo

k (δ̂δδ(l−1))

(b) Selection step:

Select from (ii) and (iii) the component j that leads to the best improvement
of the likelihood and denote it by α̂∗1 or α̂αα∗

[−1], respectively.
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Iterative component-wise boosting procedure

(c) Weak update of best predictor :

For k ∈ {1, . . . , r} and 0 < ν ≤ 1 set

α̂
(l)
1,k =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

α̂
(l−1)
1,k if k ≠ j ,

α̂
(l−1)
1,k + ν ⋅ α̂∗1 if k = j ,

and

α̂αα
(l)

[−1],k =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

α̂αα
(l−1)
[−1],k if k ≠ j ,

α̂αα
(l−1)
[−1],k + ν ⋅ α̂αα

∗

[−1] if k = j .

(d) Computation of variance-covariance components:

Estimates Q̂
(l)

are obtained as approximate EM-type estimates, yielding θ̂θθ
(l)
.
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Summary

Conclusions:

2 regularization approaches for Cox frailty models with time-varying
coefficients and log-normal frailties: penalization and boosting

the methods yield flexible and sparse hazard rate models for modeling
time-to-event data

(good performance in simulations)

reasonable estimates in application (at least for the penalty approach)

boosting looks even more promising and will be faster, because

component-wise parts of the algorithm can be parallelized

we brute-force the EDFs of each boosting update

⇒ avoid K -fold CV and use AIC / BIC to determine optimal # of boosting
steps
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Determination of Optimal Tuning Parameters

ξ0, controlling the smoothness of the log-baseline hazard γ0(t) = log(λ0(t));
in general, no complex selection procedure necessary
Ô⇒ estimation procedure is already stabilized for a moderate choice of ξ0.

ζ and ξ are determined via K -fold CV:
ξ: controls overall amount of penalization, and hence, both smoothness and
variable selection, it is of particular importance Ô⇒ use a fine grid

ζ: controls apportionment between smoothness and shrinkage Ô⇒ rougher
grid is sufficient.

CV error measure: evaluate log-likelihood (2) on the test data, i.e.

cve(δ̂δδ
train
) =

ntest

∑
i=1

Ntest
i

∑
j=1

dij η̂ij(tij) − ∫
tij

0
exp(η̂ij(s))ds,

where ntest denotes the number of clusters in the test data and Ntest
i the

corresponding cluster sizes.
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Score function

Let BT (t) ∶= (B1(t;d), . . . ,BM(t;d)) represent the vector-valued evaluations of
the M basis functions in t and define ΦΦΦT (t) ∶= (zij0 ⋅BT (t), zij1 ⋅BT (t), . . . ,
zijr ⋅BT (t)). Then, spen(δδδ) = ∂lpen(δδδ)/∂δδδ has vector components

spenβββ (δδδ) =
n

∑
i=1

Ni

∑
j=1

xij (dij − ∫
tij

0
exp(ηij(s))ds) ,

spenααα (δδδ) =
n

∑
i=1

Ni

∑
j=1
(dijΦΦΦ(tij) − ∫

tij

0
exp(ηij(s))ΦΦΦ(s)ds) −Aξ0,ξ,ζ ααα,

speni (δδδ) =
Ni

∑
j=1

uij (dij − ∫
tij

0
exp(ηij(s))ds) −Q−1(θθθ)bi , i = 1, . . . ,n.

Note here that the linear predictors ηij(t) depend on the parameter vector δδδ. The
vectors spenβββ and spenααα have dimension p and (r + 1)M, respectively, while the
vectors speni are of dimension q.
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Penalty matrix

The penalty matrix Aξ0,ξ,ζ is block-diagonal: Aξ0,ξ,ζ = diag(Aξ0 ,Aξ,ζ). The first
matrix Aξ0 = ξ0∆T

M∆M corresponds to penalization of the squared differences
between adjacent spline coefficients ααα0 of the baseline hazard. ∆M denotes the
((M − 1) ×M)-dimensional difference operator matrix of degree one, defined as

∆M =
⎛
⎜⎜⎜
⎝

−1 1
−1 1

⋱ ⋱
−1 1

⎞
⎟⎟⎟
⎠
.

The second penalty matrix Aξ,ζ results from local quadratic approximation of
penalty ξ ⋅ Jζ(ααα) (Oelker & Tutz, 2016). It is block-diagonal, i.e.
Aξ,ζ = diag(A1,ξ,ζ , . . . ,Ar ,ξ,ζ), for k = 1, . . . , r the single blocks have the form

Ak,ξ,ζ = ξ (ζψk(αααT
k ∆̃

T

M∆̃Mαααk + c)−1/2∆̃
T

M∆̃M + (1 − ζ)φk(αααT
k αααk + c)−1/2) ,

where c is a small positive number (e.g. c ≈ 10−5), αααT
k = (αk,1, . . . , αk,M) contains

all spline coefficients corresponding to the k-th time-varying effect and the matrix
∆̃M is equal to ∆M , except that its first row consist of zeros only.
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Information matrix

Fpen(δδδ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fββββββ Fβββααα Fβββ1 Fβββ2 . . . Fβββn
Fαααβββ Fαααααα Fααα1 Fααα2 . . . Fαααn
F1βββ F1ααα F11 0 . . . 0
F2βββ F2ααα 0 F22 0
⋮ ⋮ ⋮ ⋱

Fnβββ Fnααα 0 0 Fnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, with

Fββββββ = −∂
2lpen(δδδ)
∂βββ∂βββT

= −
n

∑
i=1

Ni

∑
j=1

xijxTij ∫
tij

0
exp(ηij(s))ds,

Fβββααα = FT
αααβββ = −∂

2lpen(δδδ)
∂βββ∂αααT

= −
n

∑
i=1

Ni

∑
j=1

xij ∫
tij

0
exp(ηij(s))ΦΦΦT (s)ds,

Fαααααα = −∂
2lpen(δδδ)
∂ααα∂αααT

= −
n

∑
i=1

Ni

∑
j=1
∫

tij

0
exp(ηij(s))ΦΦΦ(s)ΦΦΦT (s)ds +Aξ0,ξ,ζ ,

Fβββi = FT
iβββ = −∂

2lpen(δδδ)
∂βββ∂bT

i

= −
Ni

∑
j=1

xijuT
ij ∫

tij

0
exp(ηij(s))ds,

Fαααi = FT
iααα = −∂

2lpen(δδδ)
∂ααα∂bT

i

= −
Ni

∑
j=1

uT
ij ∫

tij

0
exp(ηij(s))ΦΦΦ(s)ds,

Fii = −∂
2lpen(δδδ)
∂bi∂bT

i

= −
Ni

∑
j=1

uijuT
ij ∫

tii

0
exp(ηii(s))ds +Q−1.
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Variance-Covariance Components

With β̃ββ
T ∶= (βββT ,αααT ), we get the simpler block structure

Fpen(δδδ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Fβ̃βββ̃ββ Fβ̃ββ1 . . . Fβ̃ββn
F1β̃ββ F11 0
⋮ ⋱

Fnβ̃ββ 0 Fnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

If the cluster sizes Ni are large enough: δ̂δδ a∼ N(δδδ,Fpen(δ̂δδ)−1)

Hence, the (expected) curvature of lpen(δ̂δδ) evaluated at the posterior mode, i.e.
Fpen(δ̂δδ)−1, is a good approximation to the covariance matrix. Then, using
standard formulas for inverting partitioned matrices, the required posterior
curvatures Vii can be derived via the formula

Vii = F−1
ii + F−1

ii Fiβ̃ββ(Fβ̃βββ̃ββ −
n

∑
i=1

Fβ̃ββiF
−1
ii Fiβ̃ββ)

−1Fβ̃ββiF
−1
ii .

Now, Q̂
(l)

can be computed by

Q̂
(l) = 1

n

n

∑
i=1
(V̂(l)ii + b̂

(l)
i (b̂

(l)
i )

T

) .
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