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Exploring the background

@ The optimal reinsurance-investment problem is a
fundamental research issue in actuarial science.
Acquiring reinsurance serves as a crucial safeguard for
insurers against adverse claims experiences.

e Considerable literature exists on this topic, under different
criteria (e.g., minimizing ruin probability or maximizing
expected utility). See for instance, among others, [Schmidli
2007], [Liang et al. IME 2014], [Zhang et al. IME 2009],
[Zhu et al. IME 2015], [Brachetta et al. IME (2019)].

@ Most of the literature relies on the classical
Crameér-Lundberg model or its diffusion approximation.
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@ Classical models assume constant claims arrival intensity.
@ This assumption is often far from realistic.

Example: claims associated with natural catastrophes are in
general affected by environmental stochastic factors;

@ As about stochastic intensity models in non-life insurance:
e Stochastic factor models: (Liang & Bayraktar, IME 2014),
(Brachetta & Ceci, IME 2019);
e Cox process with shot noise intensity: (Dassios & Jang,
Finance Stoch., 2003), (Schmidt, Risks 2014);
o Contagion models: (Cao, Landriault, & Li, IME 2020),
(Brachetta, Callegaro, Ceci & Sgarra, Finance Stoch., 2023).
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Optimal reinsurance with jump clusters

@ Jump clustering effect: in catastrophic situations the jumps in
the claims arrival process can exhibit clustering feature. We
combine Cox with shot-noise intensity and Hawkes processes
(with exponential kernel) and we get a shot-noise self-exciting
counting process. This modeling framework is inspired by the
concept initially proposed in Dassios and Zhao AAP 2011.

@ in Brachetta, Callegaro, Ceci & Sgarra, Finance Stoch. 2023 the
optimal reinsurance problem is analyzed under partial
information via a BSDE-approach.

@ in Ceci-Cretarola https://arxiv.org/abs/2404.11482 the
problem is discussed under full information with two
methodologies: HJB-approach and BSDE-approach.
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® The risk model and the reinsurance problem
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The dynamic contagion claim model

On (Q,F,P;F) with T > 0 the maturity of a reinsurance contract,
introduce the cumulative claim process C = {C;, t € [0, T|}:

N
Z Z ZZ” 1{T(”<1;}
n=1 n>1

clalms size

where the claims arrival process N; M =

process with stochastic intensity:

=D n>1 L pn_,, 1s a point

N(l) NL(Z)
—a(t—T®
A =B+ (ho—B) _at+z (z®) +3 et Zz®
~—— j=1 ~~
Int—exc jump Ext—exc.jump

N® Poisson process with intensity p > 0; {Z\"} =1 {ZP}nz1) iid.
R*-valued rvs with distribution function F) (F®), N®, {z"},>1 and
{Zf) }n>1 are independent.
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The integer-valued random measures

@ We introduce the random measures

m(l) (dt, dZ) = Z 5(Tr(Li) ;Zr(li))(dt’ dZ) ]l{Tr(li)<+oo}’ i=1,2

n>1

@ The predictable projections measures (the so-called compensator
measures) of m(!)(dt,dz) and m®) (dt,dz) are

vW(dt,dz) = A\~ FV(dz)dt, v@)(dt,dz) = pF®(dz)dt.
In particular, A\~ is the intensity of N ) hence E[N; (1) fo Asds].
@ The compensated random measures:

m®(dt,dz) := m9(dt,dz) — vV (dt,dz), i=1,2

)
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For any F-predictable nonnegative random field
{H(t,z), t€[0,T], z€ [0,400)}, i=1,2,t€[0,T]

/Ot /0+°° H(s,z)m"(ds, dz)] =E l/ot/oJrc>o H(s, z)v?(ds, dz)] _

Moreover, under the condition

T +oo .
/ / |H(s, z)|vV(ds, dz)
0 0

E

E < +00,

the process

t p+4oo
/ / H(s, z) (m(i) (ds,dz) — vV (ds, dz)), te[0,T],,
o Jo

A (dt,dz)

is an (F,P)-martingale.
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The reinsurance contract

The insurer selects a reinsurance strategy {w, t € [0, T]}, so that the
aggregate losses covered by the insurer are

t “+o0
Ct = Z@(Zj(l), uTj(l)) = /o /0 ®(z, us)mM(ds,dz), te0,T],

(the remaining C; — C}* will be undertaken by the reinsurer). We
assume:

@ The retention function ®(z, u) is continuous in u € U;

@ There exists at least two points uy and uy € U such that
0<P(z,uy) < P(z,u) < P(z,uy) =2, YuelU

(uy=maximal reinsurance, uy=null reinsurance).
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Different type of contracts

a) Proportional reinsurance: the insurer transfers a percentage 1 — u
of any future loss to the reinsurer, so U = [0, 1] and ®(z, u) = uz.

b) Excess-of-loss: the reinsurer covers all the losses exceeding a
threshold u, hence U = [0, 4+oc] and ®(z, u) = uA z.

c) Limited stop-loss reinsurance: the reinsurer covers the losses
exceeding a threshold u;, up to a maximum level uy; > u;, so that the
maximum loss is limited to (uz — ;) on the reinsurer’s side. In this
case: ®(z,u)=z—(z—w)" +(z—uz)*, sothat

U={(w,uw):w >0,u € [u,+o0]} and u = (u, ug). Here

uy = (U1, Um2) = (0, +00) and uy can be any point on the line

u; = Uy.

d) Limited stop-loss with fixed reinsurance coverage: us = u; + /3,
8 > 0. Here U = [0, +o¢], uy = 400 and uy = O corresponds to the
maximum reinsurance coverage .
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The surplus and the wealth

Under {w, t € [0,T]}, the surplus process R" of the primary insurer

follows:
dR{' = (¢, — qf') dt —dC{, Ry =RoeR™"

with F-predictable processes
@ ¢; insurance premium rate;
@ g} the reinsurance premium rate.

The insurance company invests its surplus in a risk-free asset with
interest rate r > 0, so that the wealth is X' = Ry € R"

400
dXl' = dR' + rX{' dt = (¢; — q;') dt — / ®(z, u;) mY(dt, dz) + rX* dt
0
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Problem formulation

The insurance company aims at solving (with n > O the insurer’s risk
aversion)

. o Xr] — 1 inf —nXr
ZtelgE[l e T] 1 LILIelZf/tE[e T]

Definition (Admissible strategies)

U: all the U-valued, F-predictable processes s.t. E[e™"%1]| < +oc.

For every a > 0O:

E [eaé(z(l))} < oo, E [eaz(l)} <o E [eaZ(2)j| < oo, E {eafqutuM dt} < 00.

Under these assumptions, every U-valued F-predictable process is
admissible and E [e%“"| < oo, E [ea Jo X d‘} < 00, for every a > 0.
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Premium principles

@ The expected cumulative losses

t
[// zmY(ds, dz) /)\Sds
0

@ According to the expected value principle (EVP), the insurance
premium c is given by

=E E[zV]

+oo
ce = (1 +91))\t_/ zFW(dz) = (1 + )\ E[ZzD)]
(]

where 6; > O denotes the safety loading applied by the insurer.
This implies that the net profit condition holds

t
E| /0 csds] = (1 + 6)E[Cy] > E[C/]
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Premium principles

@ Under the expected value principle (EVP) the reinsurance
premium g“ is given by

+oo

G* = (14 60g)\— /O (z— ®(z,u;)) F(dz)

where 0r > 0 denotes the safety loading applied by reinsurer.
@ This implies that for any u € &
t
El/ qg‘ds] = (1+0r)E| C;— C¢ -
0

——

losses covered by reinsurer
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Premium principles

@ Under the variance premium principle (VPP), the insurance and
reinsurance premiums are given by

+oo +o00
Ct = M- {/ zF)(dz) + 771/ zZF(l)(dz)}
0 0

a = A { / 2= 0(2, 1)) FO(d2) + g / e ut»ZF“)(dz)} ,

respectively, where n; > 0 and ngr > O are the variance loadings
applied by insurer and reinsurer, respectively.

@ Thus for any u € { and t € [0, T| the the net profit condition holds

E l/ot csds] > E[Cy]

t
E /qg‘ds > E[C; — C{].
0
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® The HJB-approach
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HJB-approach

@ Assuming ¢; = c(t, \¢) and q}* = q(t, u, \;), for each t € [0, T;

@ (X", \) is a Markov process (for any constant or Markovian
control);

@ Value function:

ot,x,\) = inf Eexn[e 7], (t,x,)) € [0,T) x R x (0, +00),
ue
where the notation E; . »[-] stands for the expectation with initial
data (t,x,\) € [0,T] x R x (0, +00).

@ If v(t,x, \) is sufficiently regular it solves the
Hamilton-Jacobi-Bellman equation:

inf LXMU0(t,x,\) =0, (T, x,\) =e "™
ucU

where £XA 4 denotes the Markov generator of the pair (X%, \)
associated to a constant control u € U.
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r(T— t)

@ We can prove that v(t,x, \) = e~ " o(t, \) with

P6N) = inf B [ 7 emahdstn 7 1 ¢ 7000 m s ]
ucl;

@ The reduced HJB equation:

+oo
SN +aB-NIEEN+ [ A+ 2) - plt V] pF P (d2)
(0]
—ne" T (t Ne(t, A) + inf WH(t,A) =0,
(1)

with final condition ¢(T, A\) = 1, where the function V" is given by
TU(t,\) = ne" T Dp(t, \)q(t, A, u)

e r(T—t) 1
+ / =0T 0ot 2+ £(2)) - (8, 1)] AFD (d2).
0
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Theorem (Verification Theorem)

Let 3 € CY((0,T) x (0,+00)) N C(]0, T] x (0, +00)) be a classical
solution of the HJB equation (1).

Let D(t, x,\) = e~ """ 5(t, \) and assume that for any u € U the
Jamily {v(r, X", \;); T stopping time, T < T} is uniformly
integrable.

Let u*(t, \) be a minimizer of V" (t, \).

Then v(t, x, \) = v(t, x, \) is the value function. Furthermore,

u; = u*(t, \-) € U is an optimal (Markovian) strategy.
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Proposition (The optimal strategy)

Under the assumptions of the Verification Theorem. Suppose moreover
that ®(z, u) is differentiable in u for almost every z and V"(t, \) is
strictly concave in u € [uy, uy]. Then, the optimal reinsurance strategy
u = {us(t, A\~ ), t € [0, T]} is given by

um (t, A=) € Ao
w(t,A\-) = qun (t, A-) € A1,
u(t,\¢-) otherwise

where Ag = {(t,\) : h(t, A\, ) < 0}, A; = {(t,\) : h(t, \, uy) > O}, with

h(t, ) =—p(t. ) 2L 7ot ai()er w22\ piiy
ou 0 ou

and u(t, \) € (um, uy) solves the following equation:

aq(\, u)
ou

ne"T=9&(z,u) 8(1)(2’ LL) F(l)
AR (dz).

= il = = SRS

- @(tv >‘)

:/mwmx+u@w
(0}
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Some problems...

@ Regularity of the value function;

@ The verification approach requires to prove existence and
uniqueness of the solution to Eq.(1) (partial
integro-differential equation with an embedded
optimization).
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@ The BSDE-approach
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The BSDE-approach

We define, for U(t, u) = {ﬂ ceU:us=usa.s., s<t< T}, the Snell
envelope (see, N. El Karuoi (1981))

W = essinf E|e "r
neU(t,u)

]:t:| )

so that if )A(t” := e " X" is the discounted wealth, then
Wy = e ™ (t, M),

for every u € Y. Where

o(t,\) = inf By [e—n JT T (e(s.A9)—a(s As,us)) dstap [T [oF €T &(z,us) mD (ds’dz)}
uelty

In particular, choosing u = wy (null reinsurance) the value process
©(t, \¢) and the Snell envelope associated to null reinsurance W;"
satisfy
X"V yx7 N
(,Q(t, )\t) = e Wt o
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To develop a BSDEs characterization for {W}, t € [0, T]} (the Snell
envelope associated to null reinsurance) to get a complete description

of {¢(t,\¢), t €[0,T]} and of the optimal control, without needing the
regularity of p(t, \).
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We define three classes of stochastic processes

@ S? denotes the space of cadlag F-adapted processes Y such that:

2
E ( sup |Yt|> < +o0.

te[0,T]
@ £? denotes the space of cadlag F-adapted processes Y such that:

T
E / |Y¢2dt| < 4-oo0.
(0]

e L (£®) denotes the space of [0, +00)-indexed F-predictable
random fields © = {©(z),t € [0, T], z € [0, +00)} such that:

<]E

T +oo
E / 02(z)\-FWV(dz)dt| < +oo
o

0

T +oo
/ / 67 (2)pF*) (dz) dt| < +o0 respectively).
o Jo
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The two-dimensional random measure

N®

(1)
Let Z=(CO,c®), ¢V =c, =3z, @ =y Zz? and

m(dt,dz;,dz,) the associated integer-valued measure. Since C(1) and
C) have not common jump times, then

m(dt,dz;,dzy) = mM (dt,dz;)do(dzz) + m® (dt,dz)d0(dz))
and the F-dual predictable projection is given by
v(dt,dz,,dzs) = M- FV(dz))d0(dzs) + pF® (dz2)d0(dzy ).

Proposition (Martingale representation theorem)

LetF = Fm" v Fm® Any square-integrable (F,P)-martingale
M = {M;, t € [0, T]|} has the following representation

+oo
M, = Mo+// Y (zymV (ds, dz) + // I (z)m® (ds,dz), (2)

r(z) e L0, i=1,2.
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Theorem (Main result)

i) (WN,0),0@) e 82 x LM x £ is the unique solution to BSDE

WN =¢ - / /+oo zymY(ds,dz) — / / o? (zym® (ds,dz)

—/ esssup f(s, Wf,,@gl)(-),us)ds,
t

uel
3)
with terminal condition £ = e~"%r | where
St WY, 00 (), u) = —W e ™It
4)

+oo
+ / WY + 0 (2)][1 — e E-2@uN] ) F1)(dz).
0

i) Any process u* € U which maximizes f(t, WY, @El)('), u;) furnishes
an optimal reinsurance strategy.
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Idea of the proof

@ Existence of a solution of BSDE (3):
- The generator of the BSDE satisfies a stochastic Lipschitz
condition;
- We apply [Theorem 3.5 in Papapantoleon et al. EJP 2018]

@ Verification Result:
Let Y be a solution to BSDE (3) and u* € i/ which attains the
ess-sup. Then Y; = W), P-a.s. and u* is an optimal control.
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Existence of solution

@ The BSDE (3) can be written via m(dt,dz;,dz,):

Yi=¢— /// Y(z1,2)m (ds,dzl,dZZ)/tTF(s,Ys,®§(~,~))ds

(5)
where

F(tv Yt, @Z(, ')7 ut) = €ss Supf(ta Yta 931(’ 0)7 ut) (6)
uel

and f(t, Yy, ©f (+,0), i) is given in (4).

@ The generator of the BSDE satisfies a stochastic Lipschitz
condition:

2 _ !
|F(t,w, 4,00, ) =F(t,w, Y, 0'(, )| < ve()ly—y' P+ @)1, ) =8¢, )|I2
where v, = 3722 (T=0(g")2 + 3)2_, 5, = 3\-.

@ Thanks to E[e? Jo Asds] < oo for any a > 0 we can apply [Theorem
3.5 in Papapantoleon et al. EJP 2018].
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Verification Result

Let D be an F-adapted process such that

(1) Dr = 1;

(2{D;e~"%'¢"  t € [0,T]} is a sub-martingale for any u € U and a
martingale for some u* € U.

Then, D; = ¢(t, \¢) P-a.s. and u* is an optimal control.

v

Theorem (Verification Result)

Let (Y,0V-(D ©Y:@) ¢ £2 x L) x £3) be a solution to BSDE (3) and
u* € U satisfies the ess-sup. Then Y; = W), P-a.s. (that is
o(t, Ar) = X" y) and u* is an optimal control.

\

Let D; := Yte”"?tN " It verifies (1) and (2) and we apply the Lemma. [
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Bellman Principle

Proposition

@ The Snell-envelope {W{'}co,1) is a sub-martingale for any u € U;

° (WY }eejo, 1) is a martingale if and only if any u* € U is an optimal

control. )

Let (Y,0Y-(D 0Y-@) ¢ £2 x L)) x £2 be a solution to BSDE (3). Then
Y; = W and we get the Bellman Principle by the equality

N T ou T su T
WY = WNenXl'e" g=nXi'e™ — pe—nXie” O
V.
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Proposition (Jump sizes of W¥)

The following representations hold

0V (z) = en%Le” [enze"“‘lp(t, Ao+ 1U(2)) — ot At_)], FO(dz)dtdP — a.el,
0P (2) = e ™" [p(t, \ie + 2) — (L, M), FP(dz)dtdP — a.e.,

foreveryt e [0,T].
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@® The optimal reinsurance strategy
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Suppose that ®(z, u) is differentiable in u € [wy, uy] for a.e. z € (0, +0)
and f is strictly concave in u € [uy, uy]. Then,uf = {u*(t, \¢-),t € [0, T|}

. b
s gen oy Uy (t,A\¢-) € Ao
u*(t,\-) = u(t,\-) otherwise
uy (t,/\t—) 61417
where

Ao = {(t,\) € [0, T] x (0, +00) : h(t, \, tpy) < O}
Ay t, A

{
{( ) ) € [O’T} X (O,+OO) : h(tv)‘qu) > 0}7

h(t A w) = —p(t, A)W‘ /0 w(t, )\+l(z))e”er<T7t)‘1>(z’“)%AF(U(dz)

and t(t, \) € (uy, uy) solves the following equation:

aq(A, u)

> r(T—t 0P
—PLA =, :/0 p(t, A+ U(z))e™ ”D(zvu)%

F) )
” AFY(dz)
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Proportional reinsurance ¢(z, u) = zu

@ Expected Value Principle: g = (1 + 6g)E[ZM]A— (1 — w)
@ The optimal retention level u* is obtained “explicitly” and
0 if O < OF(t, \r2)
u;‘ = u*(t, /\t—) = 1 if 9R > QN(t, )\t,)
u(t,\¢-) otherwise,

The stochastic thresholds (0F(t, \¢_) < 6N(t, \¢_)) are:

1 t, A
OF (t,\) = E[Z<1>]/O o (+ )( ) g (dz) - 1,
U2)) gnerr-02,,

1 t, A
GN(t,A):E[Z(l)]/ Pt (;A) e FO(dz)— 1

and u(t, \) € (0, 1) solves the following equation, w.r.t. u:

+o00

ze"?" " p() (dg).
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Limited Stop-Loss Reinsurance with fixed

maximum reinsurance coverage g > 0

@ According to the Expected Value Principle
w5
@ = (14 0R) A / (1= FO(z))dz.

Ut

@ The optimal control u* is given by

0 if Or < HL(fv )‘t—)
u=u"(t, \-) {u(t, At) if Og > 0F(t, M\2)
where 8
1 p(t,\+1(2))
o8 (t,)) = / F(dz) -1
EN=FDG Jo — wen i

and u(t, A) € (0,+o00) solves the following equation w.r.t. w:

w8 ot + U(2))

(1)
6N F'Y(dz).

(1 +0R)(F(1)(u+ﬂ) *F(l)(u)) - ener('r_t)u/
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Cox with shot noise intensity model, /(z) =

Under the Expected Value Principle

@ proportional reinsurance §F = 0 (i.e. full reinsurance is never
optimal) the optimal reinsurance is deterministic:

. N
u*,cox(t) ol {1 if Or > et (t) (7)

uex(t) if o < ON(¢),
where 0% (t) = ooy 57 € ene""2zp((dz) — 1 and @ (t) € (0, 1) is

the solution to (1 + 6g)E[Z(V)] = [F zene" "2up() (dz).

@ Limited Excess-of-Loss with fixed reinsurance coverage and
Excess-of-Loss, #F = 0 (i.e. maximal reinsurance is never optimal)
and the optimal reinsurance is deterministic:

_ log(1 +0r) o—T(T—1)
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Comparison results

Under EVP, proportional reinsurance or limited excess of loss
reinsurance, assuming ¢(t, \) increasing in A:

Whenever there is the self-exciting component /(z) # O, the insurance
company transfers more risk to the reinsurance company:

w < utex(t), telo,T.
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Monotonicity of the value function

@ Preliminary result:

p(t,A) = inf EQ[ (t, T,u)er i e "™ B(s,z,qu(”(dz%a(s,us)}ds}

uely

where Q is a probability measure equivalent to P such that under
Q, m¥(dt,dz), i = 1,2, are Poisson random measures;
(t ut) =1 +ne rT=0(c(t) — d(t, u)),
ft (s, us)e=*(s=0ds, B(t, z,1.) := € " e(zu)-Altu)i(z)
H (t T u. ) is a strictly positive r.v.

@ Under the assumption, for any u € ¢/ and t > O:
+oo

B(t,z,u)FY(dz) — a(t,u;) >0, P—a.s.
0

Then, ¢(t,\) is an increasing function of \ € (0, +00).
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Thanks for your attention!
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