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Exploring the background

The optimal reinsurance-investment problem is a
fundamental research issue in actuarial science.
Acquiring reinsurance serves as a crucial safeguard for
insurers against adverse claims experiences.

Considerable literature exists on this topic, under different
criteria (e.g., minimizing ruin probability or maximizing
expected utility). See for instance, among others, [Schmidli
2007], [Liang et al. IME 2014], [Zhang et al. IME 2009],
[Zhu et al. IME 2015], [Brachetta et al. IME (2019)].

Most of the literature relies on the classical
Cramér-Lundberg model or its diffusion approximation.
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Classical models assume constant claims arrival intensity.

This assumption is often far from realistic.

Example: claims associated with natural catastrophes are in
general affected by environmental stochastic factors;

As about stochastic intensity models in non-life insurance:
Stochastic factor models: (Liang & Bayraktar, IME 2014),
(Brachetta & Ceci, IME 2019);
Cox process with shot noise intensity: (Dassios & Jang,
Finance Stoch., 2003), (Schmidt, Risks 2014);
Contagion models: (Cao, Landriault, & Li, IME 2020),
(Brachetta, Callegaro, Ceci & Sgarra, Finance Stoch., 2023).
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Optimal reinsurance with jump clusters

Jump clustering effect: in catastrophic situations the jumps in
the claims arrival process can exhibit clustering feature. We
combine Cox with shot-noise intensity and Hawkes processes
(with exponential kernel) and we get a shot-noise self-exciting
counting process. This modeling framework is inspired by the
concept initially proposed in Dassios and Zhao AAP 2011.

in Brachetta, Callegaro, Ceci & Sgarra, Finance Stoch. 2023 the
optimal reinsurance problem is analyzed under partial
information via a BSDE-approach.

in Ceci-Cretarola https://arxiv.org/abs/2404.11482 the
problem is discussed under full information with two
methodologies: HJB-approach and BSDE-approach.
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The dynamic contagion claim model

On (Ω,F ,P;F) with T > 0 the maturity of a reinsurance contract,
introduce the cumulative claim process C = {Ct , t ∈ [0,T ]}:

Ct =

N(1)
t∑

n=1

Z (1)
n︸︷︷︸

claims size

=
∑
n≥1

Z (1)
n 1{T (1)

n ≤t}

where the claims arrival process N (1)
t =

∑
n≥1 1{T (1)

n ≤t} is a point
process with stochastic intensity:

λt = β+(λ0 −β)e−αt +

N(1)
t∑

j=1

e−α(t−T (1)
j ) ℓ(Z (1)

j )︸ ︷︷ ︸
Int−exc.jump

+

N(2)
t∑

j=1

e−α(t−T (2)
j ) Z (2)

j︸︷︷︸
Ext−exc.jump

Assumption

N (2) Poisson process with intensity ρ > 0; {Z (1)
n }n≥1 ({Z (2)

n }n≥1) i.i.d.
R+-valued rvs with distribution function F (1) (F (2)). N (2), {Z (1)

n }n≥1 and
{Z (2)

n }n≥1 are independent.
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The integer-valued random measures

We introduce the random measures

m(i)(dt,dz) =
∑
n≥1

δ
(T (i)

n ,Z(i)
n )

(dt,dz)11{T (i)
n <+∞}, i = 1,2

The predictable projections measures (the so-called compensator
measures) of m(1)(dt,dz) and m(2)(dt,dz) are

ν(1)(dt,dz) = λt−F (1)(dz)dt, ν(2)(dt,dz) = ρF (2)(dz)dt.

In particular, λt− is the intensity of N (1)
t hence E[N (1)

t ] = E[
∫ t

0 λsds].

The compensated random measures:

m̃(i)(dt,dz) := m(i)(dt,dz)− ν(1)(dt,dz), i = 1,2
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For any F-predictable nonnegative random field
{H(t, z), t ∈ [0,T ], z ∈ [0,+∞)}, i = 1,2, t ∈ [0,T ]

E

[∫ t

0

∫ +∞

0
H(s, z)m(i)(ds,dz)

]
= E

[∫ t

0

∫ +∞

0
H(s, z)ν(i)(ds,dz)

]
.

Moreover, under the condition

E

[∫ T

0

∫ +∞

0
|H(s, z)|ν(i)(ds,dz)

]
< +∞,

the process
∫ t

0

∫ +∞

0
H(s, z)

(
m(i)(ds,dz)− ν(i)(ds,dz)

)
︸ ︷︷ ︸

m̃(i)(dt,dz)

, t ∈ [0,T ]

 ,

is an (F,P)-martingale.
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The reinsurance contract

The insurer selects a reinsurance strategy {ut , t ∈ [0,T ]}, so that the
aggregate losses covered by the insurer are

Cu
t =

N(1)
t∑

j=1

Φ(Z (1)
j ,uT (1)

j
) =

∫ t

0

∫ +∞

0
Φ(z,us)m(1)(ds,dz), t ∈ [0,T ],

(the remaining Ct − Cu
t will be undertaken by the reinsurer). We

assume:

The retention function Φ(z,u) is continuous in u ∈ U ;

There exists at least two points uN and uM ∈ U such that

0 ≤ Φ(z,uM ) ≤ Φ(z,u) ≤ Φ(z,uN ) = z, ∀u ∈ U

(uM=maximal reinsurance, uN=null reinsurance).
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Different type of contracts

a) Proportional reinsurance: the insurer transfers a percentage 1 − u
of any future loss to the reinsurer, so U = [0,1] and Φ(z,u) = uz.

b) Excess-of-loss: the reinsurer covers all the losses exceeding a
threshold u, hence U = [0,+∞] and Φ(z,u) = u ∧ z.

c) Limited stop-loss reinsurance: the reinsurer covers the losses
exceeding a threshold u1, up to a maximum level u2 > u1, so that the
maximum loss is limited to (u2 − u1) on the reinsurer’s side. In this
case: Φ(z,u) = z − (z − u1)

+ + (z − u2)
+, so that

U = {(u1,u2) : u1 ≥ 0,u2 ∈ [u1,+∞]} and u = (u1,u2). Here
uM = (uM,1,uM,2) = (0,+∞) and uN can be any point on the line
u1 = u2.

d) Limited stop-loss with fixed reinsurance coverage: u2 = u1 + β,
β > 0. Here U = [0,+∞], uN = +∞ and uM = 0 corresponds to the
maximum reinsurance coverage β.
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The surplus and the wealth

Under {ut , t ∈ [0,T ]}, the surplus process Ru of the primary insurer
follows:

dRu
t =

(
ct − qu

t
)

dt − dCu
t , Ru

0 = R0 ∈ R+

with F-predictable processes

ct insurance premium rate;

qu
t the reinsurance premium rate.

The insurance company invests its surplus in a risk-free asset with
interest rate r > 0, so that the wealth is Xu

0 = R0 ∈ R+

dXu
t = dRu

t + rXu
t dt = (ct − qu

t )dt −
∫ +∞

0
Φ(z,ut)m(1)(dt,dz) + rXu

t dt
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Problem formulation

The insurance company aims at solving (with η > 0 the insurer’s risk
aversion)

sup
u∈U

E
[
1 − e−ηXu

T
]
= 1 − inf

u∈U
E
[
e−ηXu

T
]

Definition (Admissible strategies)

U : all the U-valued, F-predictable processes s.t. E
[
e−ηXu

T
]
< +∞.

Assumption
For every a > 0:

E
[
eaℓ(Z(1))

]
< ∞, E

[
eaZ(1)

]
< ∞ E

[
eaZ(2)

]
< ∞, E

[
ea

∫ T
0 quM

t dt
]
< ∞.

Under these assumptions, every U -valued F-predictable process is
admissible and E

[
eaCT

]
< ∞, E

[
ea

∫ T
0 λt dt

]
< ∞, for every a > 0.
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Premium principles

The expected cumulative losses

E[Ct ] = E

[∫ t

0

∫ +∞

0
zm(1)(ds,dz)

]
= E

[∫ t

0
λsds

]
E[Z (1)]

According to the expected value principle (EVP), the insurance
premium c is given by

ct = (1 + θI)λt−

∫ +∞

0
zF (1)(dz) = (1 + θI)λt−E[Z (1)]

where θI > 0 denotes the safety loading applied by the insurer.
This implies that the net profit condition holds

E[
∫ t

0
csds] = (1 + θI)E[Ct ] > E[Ct ]

C. Ceci (University of Rome Sapienza) Optimal reinsurance with jump clusters 15 / 43



Premium principles

Under the expected value principle (EVP) the reinsurance
premium qu is given by

qu
t = (1 + θR)λt−

∫ +∞

0
(z − Φ(z,ut))F (1)(dz)

where θR > 0 denotes the safety loading applied by reinsurer.

This implies that for any u ∈ U

E

[∫ t

0
qu

s ds

]
= (1 + θR)E[ Ct − Cu

t︸ ︷︷ ︸
losses covered by reinsurer

].
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Premium principles

Under the variance premium principle (VPP), the insurance and
reinsurance premiums are given by

ct = λt−

{∫ +∞

0
zF (1)(dz) + ηI

∫ +∞

0
z2F (1)(dz)

}

qu
t = λt−

{∫ +∞

0
(z − Φ(z,ut))F (1)(dz) + ηR

∫ +∞

0
(z − Φ(z,ut))

2 F (1)(dz)
}
,

respectively, where ηI > 0 and ηR > 0 are the variance loadings
applied by insurer and reinsurer, respectively.

Thus for any u ∈ U and t ∈ [0,T ] the the net profit condition holds

E

[∫ t

0
csds

]
> E[Ct ]

E

[∫ t

0
qu

s ds

]
> E[Ct − Cu

t ].
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HJB-approach

Assuming ct = c(t, λt) and qu
t = q(t,ut , λt), for each t ∈ [0,T ];

(Xu , λ) is a Markov process (for any constant or Markovian
control);

Value function:

v(t, x , λ) = inf
u∈U

Et,x,λ
[
e−ηXu

T
]
, (t, x , λ) ∈ [0,T )× R× (0,+∞),

where the notation Et,x,λ[·] stands for the expectation with initial
data (t, x , λ) ∈ [0,T ]× R× (0,+∞).

If v(t, x , λ) is sufficiently regular it solves the
Hamilton-Jacobi-Bellman equation:

inf
u∈U

LX ,λ,uv(t, x , λ) = 0, v(T , x , λ) = e−ηx

where LX ,λ,u denotes the Markov generator of the pair (Xu , λ)
associated to a constant control u ∈ U .
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We can prove that v(t, x , λ) = e−ηxer(T−t)
φ(t, λ) with

φ(t, λ)= inf
u∈Ut

Et,λ

[
e−η

∫ T
t er(T−s)(cs−qu

s ) ds+η
∫ T

t

∫ +∞
0 er(T−s)Φ(z,us)m(1)(ds,dz)

]
The reduced HJB equation:

∂φ

∂t
(t, λ) + α(β − λ)

∂φ

∂λ
(t, λ) +

∫ +∞

0
[φ(t, λ+ z)− φ(t, λ)] ρF (2)(dz)

− ηer(T−t)φ(t, λ)c(t, λ) + inf
u∈U

Ψu(t, λ) = 0,

(1)

with final condition φ(T , λ) = 1, where the function Ψu is given by

Ψu(t, λ) = ηer(T−t)φ(t, λ)q(t, λ,u)

+

∫ +∞

0

[
eηΦ(z,u)er(T−t)

φ(t, λ+ ℓ(z))− φ(t, λ)
]
λF (1)(dz).

C. Ceci (University of Rome Sapienza) Optimal reinsurance with jump clusters 20 / 43



Theorem (Verification Theorem)
Let φ̃ ∈ C1((0,T )× (0,+∞)) ∩ C([0,T ]× (0,+∞)) be a classical
solution of the HJB equation (1).
Let ṽ(t, x , λ) = e−ηxer(T−t)

φ̃(t, λ) and assume that for any u ∈ U the
family {ṽ(τ,Xu

τ , λτ ); τ stopping time, τ ≤ T} is uniformly
integrable.
Let u∗(t, λ) be a minimizer of Ψu(t, λ).
Then ṽ(t, x , λ) = v(t, x , λ) is the value function. Furthermore,
u∗

t = u∗(t, λt−) ∈ U is an optimal (Markovian) strategy.
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Proposition (The optimal strategy)

Under the assumptions of the Verification Theorem. Suppose moreover
that Φ(z,u) is differentiable in u for almost every z and Ψu(t, λ) is
strictly concave in u ∈ [uM ,uN ]. Then, the optimal reinsurance strategy
u∗

t = {u∗(t, λt−), t ∈ [0,T ]} is given by

u∗(t, λt−) =


uM (t, λt−) ∈ A0

uN (t, λt−) ∈ A1,

ū(t, λt−) otherwise

where A0 = {(t, λ) : h(t, λ,uM ) ≤ 0} , A1 = {(t, λ) : h(t, λ,uN ) ≥ 0}, with

h(t, λ,u)=−φ(t, λ)
∂q(u, λ)

∂u
−
∫ ∞

0
φ(t, λ+l(z))eηer(T−t)Φ(z,u) ∂Φ(z,u)

∂u
λF (1)(dz)

and ū(t, λ) ∈ (uM ,uN ) solves the following equation:

− φ(t, λ)
∂q(λ,u)

∂u
=

∫ ∞

0
φ(t, λ+ l(z))eηer(T−t)Φ(z,u) ∂Φ(z,u)

∂u
λF (1)(dz).

C. Ceci (University of Rome Sapienza) Optimal reinsurance with jump clusters 22 / 43



Some problems...
Regularity of the value function;

The verification approach requires to prove existence and
uniqueness of the solution to Eq.(1) (partial
integro-differential equation with an embedded
optimization).
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The BSDE-approach
We define, for U(t,u) =

{
ū ∈ U : ūs = us a.s., s ≤ t ≤ T

}
, the Snell

envelope (see, N. El Karuoi (1981))

W u
t = ess inf

ū∈U(t,u)
E
[
e−ηX ū

T

∣∣∣Ft

]
,

so that if X̂u
t := e−rtXu

t is the discounted wealth, then

W u
t = e−ηX̂u

t erT
φ(t, λt),

for every u ∈ U . Where

φ(t, λ)= inf
u∈Ut

Et,λ

[
e−η

∫ T
t er(T−s)(c(s,λs)−q(s,λs,us)) ds+η

∫ T
t

∫ +∞
0 er(T−s)Φ(z,us)m(1)(ds,dz)

]
,

In particular, choosing u = uN (null reinsurance) the value process
φ(t, λt) and the Snell envelope associated to null reinsurance Wt

N

satisfy
φ(t, λt) = eηX̂t

uN erT
Wt

N .
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Idea
To develop a BSDEs characterization for {W N

t , t ∈ [0,T ]} (the Snell
envelope associated to null reinsurance) to get a complete description
of {φ(t, λt), t ∈ [0,T ]} and of the optimal control, without needing the
regularity of φ(t, λ).
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We define three classes of stochastic processes

S2 denotes the space of càdlàg F-adapted processes Y such that:

E

( sup
t∈[0,T ]

|Yt |

)2
 < +∞.

L2 denotes the space of càdlàg F-adapted processes Y such that:

E

[∫ T

0
|Yt |2dt

]
< +∞.

L̂(1) (L̂(2)) denotes the space of [0,+∞)-indexed F-predictable
random fields Θ = {Θt(z), t ∈ [0,T ], z ∈ [0,+∞)} such that:

E

[∫ T

0

∫ +∞

0
Θ2

t (z)λt−F (1)(dz)dt

]
< +∞(

E

[∫ T

0

∫ +∞

0
Θ2

t (z)ρF (2)(dz)dt

]
< +∞ respectively

)
.
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The two-dimensional random measure

Let Z = (C(1),C(2)), C(1)
t = Ct =

∑N(1)
t

n=1 Z (1)
n , C(2)

t =
∑N(2)

t
n=1 Z (2)

n and
m(dt,dz1,dz2) the associated integer-valued measure. Since C(1) and
C(2) have not common jump times, then

m(dt,dz1,dz2) = m(1)(dt,dz1)δ0(dz2) + m(2)(dt,dz2)δ0(dz1)

and the F-dual predictable projection is given by

ν(dt,dz1,dz2) = λt−F (1)(dz1)δ0(dz2) + ρF (2)(dz2)δ0(dz1).

Proposition (Martingale representation theorem)

Let F = Fm(1) ∨ Fm(2)
. Any square-integrable (F,P)-martingale

M = {Mt , t ∈ [0,T ]} has the following representation

Mt = M0 +

∫ t

0

∫ +∞

0
Γ
(1)
s (z)m̃(1)(ds,dz)+

∫ t

0

∫ +∞

0
Γ
(2)
s (z)m̃(2)(ds,dz), (2)

Γ
(i)
s (z) ∈ L̂(i), i = 1,2.
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Theorem (Main result)
i) (W N ,Θ(1),Θ(2)) ∈ S2 × L̂(1) × L̂(2) is the unique solution to BSDE

W N
t = ξ −

∫ T

t

∫ +∞

0
Θ

(1)
s (z)m̃(1)(ds,dz)−

∫ T

t

∫ +∞

0
Θ

(2)
s (z)m̃(2)(ds,dz)

−
∫ T

t
ess sup

u∈U
f (s,W N

s− ,Θ
(1)
s (·),us)ds,

(3)

with terminal condition ξ = e−ηXN
T , where

f (t,W N
t− ,Θ

(1)
t (·),ut) = −W N

t−ηer(T−t)qu
t

+

∫ +∞

0
[W N

t− +Θ
(1)
t (z)]

[
1 − e−ηer(T−t)(z−Φ(z,ut))

]
λt−F (1)(dz).

(4)

ii) Any process u∗ ∈ U which maximizes f (t,W N
t ,Θ

(1)
t (·),ut) furnishes

an optimal reinsurance strategy.
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Idea of the proof

Existence of a solution of BSDE (3):
- The generator of the BSDE satisfies a stochastic Lipschitz
condition;
- We apply [Theorem 3.5 in Papapantoleon et al. EJP 2018]

Verification Result:
Let Y be a solution to BSDE (3) and u∗ ∈ U which attains the
ess-sup. Then Yt = W N

t , P-a.s. and u∗ is an optimal control.
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Existence of solution

The BSDE (3) can be written via m(dt,dz1,dz2):

Yt = ξ −
∫ T

t

∫ ∞

0

∫ ∞

0
ΘY

s (z1, z2)m̃(ds,dz1,dz2)−
∫ T

t
F (s,Ys,Θ

Y
s (·, ·))ds

(5)
where

F (t,Yt ,Θ
Y
t (·, ·),ut) = ess sup

u∈U
f (t,Yt ,Θ

Y
t (·,0),ut) (6)

and f (t,Yt ,Θ
Y
t (·,0),ut) is given in (4).

The generator of the BSDE satisfies a stochastic Lipschitz
condition:∣∣F (t, ω,y, θ(·, ·))−F (t, ω,y′, θ′(·, ·))

∣∣2≤ γt(ω)|y−y′|2+γ̄t(ω)||θ(·, ·)−θ′(·, ·)||2t (ω)

where γt = 3η2e2r(T−t)(quM
t )2 + 3λ2

t− , γ̄t = 3λt− .

Thanks to E[ea
∫ T

0 λsds] < ∞ for any a > 0 we can apply [Theorem
3.5 in Papapantoleon et al. EJP 2018].

C. Ceci (University of Rome Sapienza) Optimal reinsurance with jump clusters 31 / 43



Verification Result

Lemma
Let D be an F-adapted process such that
(1) DT = 1;
(2){Dte−ηX̂u

t erT
, t ∈ [0,T ]} is a sub-martingale for any u ∈ U and a

martingale for some u∗ ∈ U .
Then, Dt = φ(t, λt) P-a.s. and u∗ is an optimal control.

Theorem (Verification Result)
Let (Y ,ΘY ,(1),ΘY ,(2)) ∈ L2 × L̂(1) × L̂(2) be a solution to BSDE (3) and
u∗ ∈ U satisfies the ess-sup. Then Yt = W N

t , P-a.s. (that is
φ(t, λt) = eηX̂t

uN erT
Yt ) and u∗ is an optimal control.

Proof.

Let Dt := YteηX̂N
t erT

. It verifies (1) and (2) and we apply the Lemma.
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Bellman Principle

Proposition
The Snell-envelope {W u

t }t∈[0,T ] is a sub-martingale for any u ∈ U ;

{W u∗

t }t∈[0,T ] is a martingale if and only if any u∗ ∈ U is an optimal
control.

Proof.
Let (Y ,ΘY ,(1),ΘY ,(2)) ∈ L2 × L̂(1) × L̂(2) be a solution to BSDE (3). Then
Yt = W N

t and we get the Bellman Principle by the equality
W u

t = W N
t eηX̂N

t erT
e−ηX̂u

t erT
= Dte−ηX̂u

t erT
.
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Proposition (Jump sizes of W N )

The following representations hold

Θ
(1)
t (z) = e−ηX̂N

t−erT
[
eηzer(T−t)

φ(t, λt− + l(z))− φ(t, λt−)
]
, F (1)(dz)dtdP − a.e.,

Θ
(2)
t (z) = e−ηX̂N

t−erT
[φ(t, λt− + z)− φ(t, λt−)] , F (2)(dz)dtdP − a.e.,

for every t ∈ [0,T ].
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Proposition

Suppose that Φ(z,u) is differentiable in u ∈ [uM ,uN ] for a.e. z ∈ (0,+∞)
and f is strictly concave in u ∈ [uM ,uN ]. Then,u∗

t = {u∗(t, λt−), t ∈ [0,T ]}
is given by

u∗(t, λt−) =


uM (t, λt−) ∈ A0

ū(t, λt−) otherwise
uN (t, λt−) ∈ A1,

where

A0 = {(t, λ) ∈ [0,T ]× (0,+∞) : h(t, λ,uM ) ≤ 0}
A1 = {(t, λ) ∈ [0,T ]× (0,+∞) : h(t, λ,uN ) ≥ 0} ,

h(t, λ,u) = −φ(t, λ)
∂q(λ,u)

∂u
−
∫ ∞

0
φ(t, λ+l(z))eηer(T−t)Φ(z,u) ∂Φ(z,u)

∂u
λF (1)(dz)

and ū(t, λ) ∈ (uM ,uN ) solves the following equation:

−φ(t, λ)
∂q(λ,u)

∂u
=

∫ ∞

0
φ(t, λ+ l(z))eηer(T−t)Φ(z,u) ∂Φ(z,u)

∂u
λF (1)(dz).
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Proportional reinsurance Φ(z,u) = zu

Expected Value Principle: qu
t = (1 + θR)E[Z (1)]λt−(1 − ut)

The optimal retention level u∗ is obtained “explicitly” and

u∗
t = u∗(t, λt−) =


0 if θR ≤ θF (t, λt−)

1 if θR ≥ θN (t, λt−)

ū(t, λt−) otherwise,

The stochastic thresholds (θF (t, λt−) < θN (t, λt−)) are:

θF (t, λ) =
1

E[Z (1)]

∫ ∞

0

φ(t, λ+ l(z))
φ(t, λ)

zF (1)(dz)− 1,

θN (t, λ) =
1

E[Z (1)]

∫ ∞

0

φ(t, λ+ l(z))
φ(t, λ)

eηer(T−t)zzF (1)(dz)− 1

and ū(t, λ) ∈ (0,1) solves the following equation, w.r.t. u:

(1 + θR)E[Z (1)] =

∫ +∞

0

φ(t, λ+ l(z))
φ(t, λ)

zeηer(T−t)zuF (1)(dz).
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Limited Stop-Loss Reinsurance with fixed
maximum reinsurance coverage β > 0

According to the Expected Value Principle

qu
t = (1 + θR)λt−

∫ ut+β

ut

(1 − F (1)(z))dz.

The optimal control u∗ is given by

u∗
t = u∗(t, λt−) =

{
0 if θR ≤ θL(t, λt−)

ū(t, λt−) if θR > θL(t, λt−)

where

θL(t, λ) =
1

F (1)(β)

∫ β

0

φ(t, λ+ l(z))
φ(t, λ)

F (1)(dz)− 1.

and ū(t, λ) ∈ (0,+∞) solves the following equation w.r.t. u:

(1+θR)
(
F (1)(u +β)−F (1)(u)

)
= eηer(T−t)u

∫ u+β

u

φ(t, λ+ l(z))
φ(t, λ)

F (1)(dz).
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Cox with shot noise intensity model, ℓ(z) = 0

Under the Expected Value Principle

proportional reinsurance θF = 0 (i.e. full reinsurance is never
optimal) the optimal reinsurance is deterministic:

u∗,cox(t) =

{
1 if θR ≥ θN

t (t)
ūcox(t) if θR < θN

t (t),
(7)

where θN (t) = 1
E[Z(1)]

∫∞
0 eηer(T−t)zzF (1)(dz)− 1 and ūcox(t) ∈ (0,1) is

the solution to (1 + θR)E[Z (1)] =
∫ +∞

0 zeηer(T−t)zuF (1)(dz).

Limited Excess-of-Loss with fixed reinsurance coverage and
Excess-of-Loss, θL = 0 (i.e. maximal reinsurance is never optimal)
and the optimal reinsurance is deterministic:

u∗,cox(t) =
log(1 + θR)

η
e−r(T−t),
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Comparison results

Under EVP, proportional reinsurance or limited excess of loss
reinsurance, assuming φ(t, λ) increasing in λ:

Whenever there is the self-exciting component ℓ(z) ̸= 0, the insurance
company transfers more risk to the reinsurance company:

u∗
t ≤ u∗,cox(t), t ∈ [0,T ].
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Monotonicity of the value function

Preliminary result:

φ(t, λ) = inf
u∈Ut

EQ
[
H(t,T ,u.)eλ

∫ T
t e−α(s−t){

∫ +∞
0 B(s,z,u.)F (1)(dz)−a(s,us)}ds

]
where Q is a probability measure equivalent to P such that under
Q, m(i)(dt,dz), i = 1,2, are Poisson random measures;
a(t,ut) := 1 + ηer(T−t)(c(t)− d(t,ut)),
A(t,u.) :=

∫ T
t a(s,us)e−α(s−t)ds, B(t, z,u.) := eηer(T−t)Φ(z,ut)−A(t,u.)ℓ(z),

H(t,T ,u.) is a strictly positive r.v.

Under the assumption, for any u ∈ U and t > 0:∫ +∞

0
B(t, z,u.)F (1)(dz)− a(t,ut) ≥ 0, P − a.s.

Then, φ(t, λ) is an increasing function of λ ∈ (0,+∞).
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Thanks for your attention!
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