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Kyle-Back model of informed trading

Inspired by Kyle (1985), Back (1992) studies a market for a
bond and a risky asset with three types of participants:

1 Noise traders: The noise traders have no private
information and are not strategic. Their cumulative
demand is given by σB, where B is a Brownian motion and
σ is constant.

2 Informed trader, a.k.a. insider: The insider knows the value
of the risky asset at time 1, which is given by a random
variable, V , independent of B. Being risk-neutral, her
objective is to maximize her expected profit.

3 Market makers: The market makers observe the total order
and set the price of the risky asset to clear the market via a
Bertrand competition.



The pricing mechanism of the market

Market makers decide the price by looking at the total order

Yt = σBt + θt ,

where θt is the position of the insider in the risky asset at
time t .
Thus, the filtration of the market maker is the one
generated by Y . Note that θ is not necessarily adapted to
FY .
The market makers have a pricing rule, H : [0,1]× R 7→ R,
to assign the price in the following form:

St = H(t ,Yt),

where St is the market price of the risky asset at time t . H
is strictly increasing in Y .



Equilibrium

The market makers choose a rational pricing rule, i.e. a
pricing rule so that

H(t ,Yt) = E[V |FY
t ],

for every t ∈ [0,1].
The insider aims to maximize her expected profit out of
trading.
Equilibrium is a pair (H∗, θ∗) such that the following
conditions are satisfied:

1 Market efficiency: Given θ∗, H∗ is a rational pricing rule.
2 Insider optimality: Given H∗, θ∗ maximizes the expected

profit of the insider.



The Kyle model without frictions
Kyle model with penalties

Emergence of Schrödinger potentials
Equilibrium for the Kyle-Back model with penalties

Regulating insider trading
Conclusion

Umut Çetin Kyle and penalties



The Kyle model without frictions
Kyle model with penalties

Emergence of Schrödinger potentials
Equilibrium for the Kyle-Back model with penalties

Regulating insider trading
Conclusion

Kyle model with penalties

Umut Çetin Kyle and penalties



Insider trading with legal penalties

Recently Carré, Collin-Dufresne and Gabriel (2022, JET)
and Kacperczyk and Pagnotta (2023, forthcoming in JoF)
study in a one-period model the Kyle equilibrium when the
insider is subject to additional transaction costs (or legal
risk).

These additional costs could be a result of frictions in
executing large portfolios, or
The penalties arise in case the informed trader is an illegal
insider and pays a penalty (in addition to losing all her
profits) after investigation.
Carré et al. consider general convex penalties and
uniformly distributed noise trades while Kacperczyk and
Pagnotta have quadratic penalties and normally distributed
noise demand.
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Penalties in continuous time

Let’s associate the following quadratic transaction cost by
time t to the strategy dθt = αtdt :

Ct :=
c
2

∫ t

0
α2

sds.

for some c > 0.
Her objective is still to maximize the expected final wealth,
W1, given by

W1 =

∫ 1

0
(V − Ss)αsds − c

2

∫ 1

0
α2

sds.



Legal penalties in continuous time

The above cost structure can also arise as a legal penalty.
Indeed, suppose an investigation identifies illegal inside
trading with probability p, after which the insider pays a
legal penalty of k

∫ 1
0 α2

t dt .

The expected profit of the insider under this scenario is

Ev
[
(1 − p)

∫ 1

0
(V − Ss)αsds − pk

∫ 1

0
α2

sds
]

= (1 − p)Ev
[ ∫ 1

0
(V − Ss)αsds − pk

1 − p

∫ 1

0
α2

sds
]
.

Thus the coefficient c from the previous slide can be
associated with pk

1−p , which gets large as the probability of
a successful investigation gets bigger.
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Insider’s optimality

Recall dYt = σdBt + αtdt , and let

J(t , y) = sup
α∈A(H)

Ev
[ ∫ 1

t
(v−H(u,Yu))αudu−c

2

∫ 1

t
α2

t dt
∣∣∣Yt = y

]
.

Direct calculations lead to

Jt +
σ2

2
Jyy + sup

α

{
α(Jy + v − H)− cα2

2

}
= 0.

Therefore,

α∗ =
Jy (t , y) + v − H(t , y)

c
. (1)

and

Jt +
σ2

2
Jyy +

(Jy + v − H)2

2c
= 0. (2)
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A quadratic BSDE
Next suppose there exists a smooth function J0 such that

J0
t +

σ2

2
J0

yy = 0, J0
y = H − v . (3)

Thus, if one defines u = J − J0 and conjectures that J(1, ·) ≡ 0,
one obtains

ut+
1
2
σ2uyy+

1
2c

u2
y = 0, u(1, y) = −j0(y , v) := −J0(1, y). (4)

This has a simple (BSDE) formulation

dUt = σZtdBt −
1
2c

Z 2
t dt , U1 = u(1, σB1), (5)

whose solution is given by u(t , x) = cσ2 log ρ(t , x , v), where

ρ(t , x , v) := Ev
[
exp

(
− j0(σB1, v)

cσ2

)∣∣∣σBt = x
]
. (6)
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Towards a recipe for equilibrium

The above implies the optimal control of the insider is
α∗(t ,Yt ,V ), where

α∗(t , y , v) := σ2 ρy (t , y , v)
ρ(t , y , v)

, (7)

implying an h-transformation in making!

Moreover, the hypothesis on J0 implies H solves heat
equation, which in turn requires α̂∗ ≡ 0.
Let’s denote the distribution of V by Π, and observe that if
ρ(t ,Yt , v)Π(dv) = P(V ∈ dv |FY

t ), then Y is a martingale in
its own filtration since l

E
[ρy (t ,Yt ,V )

ρ(t ,Yt ,V )

∣∣∣FY
t

]
=

∫
ρy (t ,Yt , v)Π(dv)

=
d
dy

∫
ρ(t , y , v)Π(dv)

∣∣∣
y=Yt

= 0,
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Filtering problem

Proposition 1

Suppose that there exists a continuous function j0 such that
ρ(0,0, ·) ≡ 1, where ρ is defined via (6). Assume further that
there exists a unique strong solution on (Ω,G, (Gt)t∈[0,1],Q) to

Yt = σBt +

∫ t

0
σ2 ρy (s,Ys,V )

ρ(s,Ys,V )
ds

such that

EQ
[ ∫ t

0

(ρy (s,Ys,V )

ρ(s,Ys,V )

)2]
< ∞, t ∈ [0,1]. (8)

Then,

ρ(t ,Yt , v)Π(dv) = P(V ∈ dv |FY
t ), t ∈ [0,1].



A recipe for equilibrium

1 Find a continuous function j0 such that i) ρ(0,0, ·) ≡ 1,
where ρ is given by (6), and ii) it is differentiable in its first
parameter with j0y (y , v) = h(y)− v . Note that the first
condition entails∫

R

1√
2πσ2

exp
(
− y2

2σ2

)
exp

(
− j0(y , v)

σ2c

)
dy = 1, ∀v .

(9)
2 Set

Ht +
1
2
σ2Hyy = 0, H(1, y) = h(y).

3 Show that (H, θ∗) with dθ∗t = σ2 ρy (t ,Yt ,V )
ρ(t ,Yt ,V ) dt is equilibrium

provided they are admissible by using the candidate value
function J = J0 + u that satisfies (2).



The Kyle model without frictions
Kyle model with penalties

Emergence of Schrödinger potentials
Equilibrium for the Kyle-Back model with penalties

Regulating insider trading
Conclusion

Emergence of Schrödinger potentials

Umut Çetin Kyle and penalties



Towards a fixed-point algorithm
Notation: ĉ := cσ2. That j0y = h(y)− v for some h to be
determined implies we are searching for a j0 such that

j0(y , v) = Ψ(v) + ϕ(y)− yv . (10)

Next, since exp(−j0(y , v)/ĉ)Π(dv) is the conditional
distribution of V given Y1 = y , it must integrate to 1:∫

f (R)
exp

(yv −Ψ(v)
ĉ

)
Π(dv) = exp

(ϕ(y)
ĉ

)
Moreover, (9) is equivalent to∫

R
exp

(yv − ϕ(y)
ĉ

)
p(σ, y)dy = exp

(Ψ(v)
ĉ

)
,

where p(σ.·) is the density of N(0, σ2).
Thus, if they exist, ϕ/ĉ and Ψ/ĉ are the unique potentials
of the entropic optimal transport problem from N(0, σ2) to
Π with the quadratic “cost function” 1

2ĉ (x − y)2.
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Notation: ĉ := cσ2. That j0y = h(y)− v for some h to be
determined implies we are searching for a j0 such that

j0(y , v) = Ψ(v) + ϕ(y)− yv . (10)

Next, since exp(−j0(y , v)/ĉ)Π(dv) is the conditional
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Existence of solutions

Given the positivity of the cost function, the associated
entropic optimal transport problem has a solution (see
lecture notes by M. Nutz) with the potentials ϕ and Ψ
solving the Schrödinger equations

ϕ(y) = ĉ log

∫
f (R)

exp
(yv −Ψ(v)

ĉ

)
Π(dv),

Ψ(v) = ĉ log

∫
R
exp

(yv − ϕ(y)
ĉ

)
p(σ, y)dy .

(11)

Moreover, E[|ϕ(σB1)|+ |Ψ(V )|] < ∞.

Umut Çetin Kyle and penalties



Differentiability of solutions

Assume that V has all exponential moments. Then it is a
simple exercise to show that ϕ and Ψ are infinitely
differentiable.
Moreover, one can also show that they are strictly convex
and bounded from below.

In particular,

ϕ′(y) =
∫

vνΨ(dv), ϕ′′(y) =
1
ĉ

(∫
v2νΨ(dv)−

(∫
vνΨ(dv)

)2)
,

(12)
where

νΨ(dv) =
exp

(
yv−Ψ(v)

ĉ

)
Π(dv)∫

exp
(

yv−Ψ(v)
ĉ

)
Π(dv)

.

Note: νΨ will be the conditinal distribution of V given Y1 in
equilibrium!
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Gaussian case

Suppose that V ∼ N(µ, γ2).

One expects H∗(t , y) = λy + µ for some λ > 0.
Given that H∗(1, ·) is ϕ’s derivative, combined with a
normalisation that ϕ∗(0) = 0, one expects that
ϕ∗(y) = λy2

2 + µy . Indeed,

ϕ∗(y) = λ∗y2

2 + µy for

λ∗ =
−c +

√
c2 + 4 γ2

σ2

2
. (13)

Moreover,

Ψ∗(v) =
ĉ
2
log

c
c + λ∗ +

(µ− v)2

2(c + λ∗)
. (14)
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Equilibrium

Now, denote the solution of (11) by (ϕ∗,Ψ∗) with the
normalisation that ϕ∗(0) = 0.
Next define

H∗(t , y) =
∫

ρ∗(t , y , z)zΠ(dz), (15)

where

ρ∗(t , y , v) := Ev
[
exp

(
− j∗(σB1, v)

ĉ

)∣∣∣σBt = y
]
. (16)

Observe that

H∗
t +

σ2

2
H∗

yy = 0, H∗(1, ·) = h∗ =
dϕ∗

dy
. (17)



Equilibrium

Then (H∗, θ∗) is an equilibrium where

dθ∗t = σ2 ρ
∗
y (t ,Yt ,V )

ρ∗(t ,Yt ,V )
dt , t ∈ [0,1], and θ∗0 = 0. (18)

Informed trader’s expected profit is given by

E0,v [W θ∗

1 ] = J(0,0) = Ψ∗(v) + E0,v [ϕ∗(σB1)]. (19)

The price inefficiency of the equilibrium, denoted by δ, is
given by

δ := E[Var(V |FY∗

1 )] = ĉE
[d2ϕ∗

dy2 (Y ∗
1 )
]
. (20)



Equilibrium

Then (H∗, θ∗) is an equilibrium where

dθ∗t = σ2 ρ
∗
y (t ,Yt ,V )

ρ∗(t ,Yt ,V )
dt , t ∈ [0,1], and θ∗0 = 0. (18)

Informed trader’s expected profit is given by

E0,v [W θ∗

1 ] = J(0,0) = Ψ∗(v) + E0,v [ϕ∗(σB1)]. (19)

The price inefficiency of the equilibrium, denoted by δ, is
given by

δ := E[Var(V |FY∗

1 )] = ĉE
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Alternative representation of the optimal strategy

Suppose H∗(1, ·) is of at most exponential growth. Then,

α∗
t :=

dθ∗t
dt

=
1
c
(v − E0,v [h∗(Y ∗

1 )|F I
t ]), (21)

with E0,v [h(Y ∗
1 )|F I

t ] = P(t ,Y ∗
t ; v), where

P(t , y ; v) =

∫
R h∗(x) exp(vx−ϕ∗(x)

ĉ )p(σ
√

1 − t , x − y))dx∫
R exp( vx−ϕ∗(x)

ĉ )p(σ
√

1 − t , x − y))dx
.

Thus, insider trades on the differential between her private
signal and the expected terminal price, and trades
aggressively if the penalty, i.e. c, is small.
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Connection with h-transforms

Consider the SDE associated to the equilibrium demand:

Y ∗
t = σBt + σ2

∫ t

0

ρ∗y (s,Y ∗
s , v)

ρ∗(s,Ys, v)
ds. (22)

Let Q∗ be the law induced by Y ∗ on the space of
continuous functions on [0,1] vanishing at 0.

Let (Bt)t∈[0,1] be the right continuous augmentation of the
natural filtration of the coordinate process X , and W be the
Wiener measure.
Then Q∗ is given by the following h-transform of Brownian
motion:

EQ∗
[F ] =

EW
[
F exp

(
vσX1−ϕ∗(σX1)

ĉ

)]
EW

[
exp

(
vσX1−ϕ∗(σX1)

ĉ

)] , F ∈ B1. (23)
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Relative entropy of the h-transform

The relative entropy of the above change of measure is not
only finite but can be computed explicitly.
Indeed,

H(Q∗||W) =
v(Ψ∗)′(v)−Ψ∗(v)− E0,v [ϕ∗(Y ∗

1 )]

ĉ

Consequently, the insider expects to the following penalty
in equilibrium:

v(Ψ∗)′(v)−Ψ∗(v)− E0,v [ϕ∗(Y ∗
1 )].



Back to the Gaussian case

For a better parametrisation suppose c = κ γ
σ .

Then

dY ∗
t = σdBt + Λ(κ)σ

V−µ
γ − Λ(κ)Y∗

t
σ

1 − tΛ2(κ)
dt ,

where Λ(κ) =

√
κ2+4−κ

2 .

λ∗ = Λ(κ) γσ .

Y ∗ is a martingale for market makers, but it is an O-U
process mean reverting around (V−µ)σ

γΛ(κ) for the insider.

As κ → 0, Y ∗ converges to

dY ∗
t = σdBt + σ

V−µ
γ − Y∗

t
σ

1 − t
dt ;

that is, Y∗

σ becomes a Brownian bridge from 0 to V−µ
γ .
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Asymptotics for large penalties

In the above Gaussian setting

α∗
t ∼ N

(V − µ

γ
Λ(κ)σ,

tσ2Λ4(κ)

1 − tΛ2(κ)

)
.

That is, the rate of trading is constant on average over the
trading horizon.

As κ → ∞, Λ → 0. Thus, even after normalizing the
insider’s trades by Λ(κ), the standard deviation of the
trading rate remains small, that is, order of Λ(κ).
Thus, the insider buys (sells) at the constant rate
|V−µ|

γ Λ(κ)σ if her private value is greater (smaller) than the
initial price, µ, of the asset.
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Expected penalties are non-monotone
Insider’s expected wealth is decreasing in κ. However, the
expected penalty is not monotone!
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Figure: Expected penalties in equilibrium normalised by γσ.
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Regulator’s dilemma
Suppose V is Gaussian, and the regulator has the
following simple objective:

min
κ

Λ(κ)γσ + RκΛ(κ)γ2,

subject to − γσ

2
κ log(κΛ(κ)) ≥ b,

(24)

for some R > 0 and b > 0.

Note that the first term is the expected loss of the noise
traders and the second is the expected post-trade variance
adjusted by the factor R, which measures the sensitivity of
the policy toward price efficiency.
Since the expected penalties are bounded, if

b0 :=
b
γσ

< P̄ := sup−1
2
κ log(κΛ(κ)),

the budget constraint cannot be satisfied. Then it can be
shown that if the amount of noise trading is rather small,
the regulator does not run an investigation.
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Optimal policy

Now suppose b0 ≥ P̄. Define

K(a) := {κ : −κ log(κΛ(κ)) ≥ a}. (25)

Then the optimal penalty rate is c∗ := κ∗ γ
σ , where

κ∗ = argmin
κ∈K(b0)

Λ(κ) + R
γ

σ
(1 − Λ2(κ)). (26)



Figure: The optimal penalty rate κ∗ as a function of noise volatility σ,
and the regulator’s sensitivity toward price efficiency, R0 = R γ

σ . The
figure assumes γ = 1 and b = 0.1.
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Conclusion

Solved in continuous time the extension of the Kyle model
with penalties on insider trading.
The solution reveals an interesting connection between
quadratic BSDEs and h-transforms, where the terminal
condition of the BSDE is determined in equilibrium.
One can use this setup to solve the regulators’s problem
with the objective to minimise uninformed traders losses
but also keep the informational efficiency above a certain
level. For details, see
U. Çetin, Insider trading with legal risk in continuous time,
SSRN preprint.

Extension to general convex cost functions will be of great
interest as it is important for the regulator to decide the
best cost functional to regulate insider trading.
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