# Insider trading with penalties in continuous time

#### Umut Çetin

#### London School of Economics

Research Seminar @ Institute of Mathematics and Statistics WU Vienna 15 May 2024

The Kyle model without frictions Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading Conclusion

# Outline of talk

- 1 The Kyle model without frictions
- 2 Kyle model with penalties
- 3 Emergence of Schrödinger potentials
- 4 Equilibrium for the Kyle-Back model with penalties
- 5 Regulating insider trading
- 6 Conclusion

< D > < B > < E > < E</p>

#### The Kyle model without frictions

Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading Conclusion

#### The Kyle model without frictions



Kyle and penalties

æ

#### Kyle-Back model of informed trading

Inspired by Kyle (1985), Back (1992) studies a market for a bond and a risky asset with three types of participants:

- **1** Noise traders: The noise traders have no private information and are not strategic. Their cumulative demand is given by  $\sigma B$ , where B is a Brownian motion and  $\sigma$  is constant.
- Informed trader, a.k.a. insider: The insider knows the value of the risky asset at time 1, which is given by a random variable, V, independent of B. Being risk-neutral, her objective is to maximize her expected profit.
- 3 *Market makers:* The market makers observe the total order and set the price of the risky asset to clear the market via a Bertrand competition.

#### The pricing mechanism of the market

Market makers decide the price by looking at the total order

$$Y_t = \sigma B_t + \theta_t,$$

where  $\theta_t$  is the position of the insider in the risky asset at time *t*.

- Thus, the filtration of the market maker is the one generated by *Y*. Note that θ is not necessarily adapted to *F<sup>Y</sup>*.
- The market makers have a *pricing rule*,  $H : [0, 1] \times \mathbb{R} \mapsto \mathbb{R}$ , to assign the price in the following form:

$$S_t = H(t, Y_t),$$

where  $S_t$  is the market price of the risky asset at time *t*. *H* is strictly increasing in *Y*.

The market makers choose a rational pricing rule, i.e. a pricing rule so that

$$H(t, Y_t) = \mathbb{E}[V|\mathcal{F}_t^Y],$$

for every  $t \in [0, 1]$ .

- The insider aims to maximize her expected profit out of trading.
- Equilibrium is a pair (H\*, 0\*) such that the following conditions are satisfied:
  - 1

*Market efficiency:* Given  $\theta^*$ ,  $H^*$  is a rational pricing rule.

Insider optimality: Given H\*, θ\* maximizes the expected profit of the insider.

The Kyle model without frictions Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading Conclusion

Э

The Kyle model without frictions Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading Conclusion

#### Kyle model with penalties



Kyle and penalties

< □ > < □ > < □ > < □ > < □ >

æ

#### Insider trading with legal penalties

Recently Carré, Collin-Dufresne and Gabriel (2022, JET) and Kacperczyk and Pagnotta (2023, forthcoming in JoF) study in a one-period model the Kyle equilibrium when the insider is subject to additional transaction costs (or legal risk).

#### Insider trading with legal penalties

Recently Carré, Collin-Dufresne and Gabriel (2022, JET) and Kacperczyk and Pagnotta (2023, forthcoming in JoF) study in a one-period model the Kyle equilibrium when the insider is subject to additional transaction costs (or legal risk).

 These additional costs could be a result of frictions in executing large portfolios, or

#### Insider trading with legal penalties

- Recently Carré, Collin-Dufresne and Gabriel (2022, JET) and Kacperczyk and Pagnotta (2023, forthcoming in JoF) study in a one-period model the Kyle equilibrium when the insider is subject to additional transaction costs (or legal risk).
- These additional costs could be a result of frictions in executing large portfolios, or
- The penalties arise in case the informed trader is an illegal insider and pays a penalty (in addition to losing all her profits) after investigation.
- Carré et al. consider general convex penalties and uniformly distributed noise trades while Kacperczyk and Pagnotta have quadratic penalties and normally distributed noise demand.

#### Penalties in continuous time

Let's associate the following quadratic transaction cost by time *t* to the strategy  $d\theta_t = \alpha_t dt$ :

$$C_t := \frac{c}{2} \int_0^t \alpha_s^2 ds.$$

for some c > 0.

 Her objective is still to maximize the expected final wealth, W<sub>1</sub>, given by

$$W_1 = \int_0^1 (V - S_s) \alpha_s ds - \frac{c}{2} \int_0^1 \alpha_s^2 ds.$$

#### Legal penalties in continuous time

- The above cost structure can also arise as a legal penalty.
- Indeed, suppose an investigation identifies illegal inside trading with probability *p*, after which the insider pays a legal penalty of  $k \int_0^1 \alpha_t^2 dt$ .

(日) (四) (注) (注) (注) (注)

#### Legal penalties in continuous time

- The above cost structure can also arise as a legal penalty.
- Indeed, suppose an investigation identifies illegal inside trading with probability *p*, after which the insider pays a legal penalty of  $k \int_0^1 \alpha_t^2 dt$ .
- The expected profit of the insider under this scenario is

$$E^{\nu}\left[(1-p)\int_{0}^{1}(V-S_{s})\alpha_{s}ds-pk\int_{0}^{1}\alpha_{s}^{2}ds\right]$$
$$=(1-p)E^{\nu}\left[\int_{0}^{1}(V-S_{s})\alpha_{s}ds-\frac{pk}{1-p}\int_{0}^{1}\alpha_{s}^{2}ds\right].$$

Thus the coefficient *c* from the previous slide can be associated with  $\frac{pk}{1-p}$ , which gets large as the probability of a successful investigation gets bigger.

Recall 
$$dY_t = \sigma dB_t + \alpha_t dt$$
, and let  

$$J(t, y) = \sup_{\alpha \in \mathcal{A}(H)} E^v \bigg[ \int_t^1 (v - H(u, Y_u)) \alpha_u du - \frac{c}{2} \int_t^1 \alpha_t^2 dt \bigg| Y_t = y \bigg].$$

. .

Recall  $dY_t = \sigma dB_t + \alpha_t dt$ , and let

$$J(t,y) = \sup_{\alpha \in \mathcal{A}(H)} E^{v} \bigg[ \int_{t}^{1} (v - H(u, Y_{u})) \alpha_{u} du - \frac{c}{2} \int_{t}^{1} \alpha_{t}^{2} dt \Big| Y_{t} = y \bigg].$$

Direct calculations lead to

$$J_t + \frac{\sigma^2}{2}J_{yy} + \sup_{\alpha} \left\{ \alpha(J_y + v - H) - \frac{c\alpha^2}{2} \right\} = 0.$$

(日) (四) (注) (注) (三) (三)

Recall 
$$dY_t = \sigma dB_t + \alpha_t dt$$
, and let

$$J(t, y) = \sup_{\alpha \in \mathcal{A}(H)} E^{v} \bigg[ \int_{t}^{1} (v - H(u, Y_{u})) \alpha_{u} du - \frac{c}{2} \int_{t}^{1} \alpha_{t}^{2} dt \bigg| Y_{t} = y \bigg].$$

Direct calculations lead to

$$J_t + \frac{\sigma^2}{2}J_{yy} + \sup_{\alpha} \left\{ \alpha(J_y + v - H) - \frac{c\alpha^2}{2} \right\} = 0.$$

Therefore,

$$\alpha^* = \frac{J_y(t, y) + v - H(t, y)}{c}.$$
 (1)

Recall 
$$dY_t = \sigma dB_t + \alpha_t dt$$
, and let

$$J(t, y) = \sup_{\alpha \in \mathcal{A}(H)} E^{v} \bigg[ \int_{t}^{1} (v - H(u, Y_{u})) \alpha_{u} du - \frac{c}{2} \int_{t}^{1} \alpha_{t}^{2} dt \bigg| Y_{t} = y \bigg].$$

Direct calculations lead to

$$J_t + \frac{\sigma^2}{2}J_{yy} + \sup_{\alpha} \left\{ \alpha(J_y + v - H) - \frac{c\alpha^2}{2} \right\} = 0.$$

Therefore,

$$\alpha^* = \frac{J_y(t, y) + v - H(t, y)}{c}.$$
 (1)

500

and

$$J_t + \frac{\sigma^2}{2}J_{yy} + \frac{(J_y + v - H)^2}{2c} = 0.$$
 (2)

## A quadratic BSDE

Next suppose there exists a smooth function  $J^0$  such that

$$J_t^0 + \frac{\sigma^2}{2} J_{yy}^0 = 0, \qquad J_y^0 = H - v.$$
 (3)

(日) (四) (注) (注) (三) (三)

Thus, if one defines  $u = J - J^0$  and conjectures that  $J(1, \cdot) \equiv 0$ , one obtains

$$u_t + \frac{1}{2}\sigma^2 u_{yy} + \frac{1}{2c}u_y^2 = 0, \quad u(1,y) = -j^0(y,v) := -J^0(1,y).$$
 (4)

## A quadratic BSDE

Next suppose there exists a smooth function  $J^0$  such that

$$J_t^0 + \frac{\sigma^2}{2} J_{yy}^0 = 0, \qquad J_y^0 = H - v.$$
 (3)

Thus, if one defines  $u = J - J^0$  and conjectures that  $J(1, \cdot) \equiv 0$ , one obtains

$$u_t + \frac{1}{2}\sigma^2 u_{yy} + \frac{1}{2c}u_y^2 = 0, \quad u(1,y) = -j^0(y,v) := -J^0(1,y).$$
 (4)

This has a simple (BSDE) formulation

$$dU_t = \sigma Z_t dB_t - \frac{1}{2c} Z_t^2 dt, \quad U_1 = u(1, \sigma B_1), \quad (5)$$

whose solution is given by  $u(t, x) = c\sigma^2 \log \rho(t, x, v)$ , where

$$\rho(t, x, v) := E^{v} \Big[ \exp \Big( -\frac{j^{0}(\sigma B_{1}, v)}{c\sigma^{2}} \Big) \Big| \sigma B_{t} = x \Big].$$
(6)

The above implies the optimal control of the insider is  $\alpha^*(t, Y_t, V)$ , where

$$\alpha^*(t, y, v) := \sigma^2 \frac{\rho_y(t, y, v)}{\rho(t, y, v)},\tag{7}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

implying an *h*-transformation in making!

The above implies the optimal control of the insider is  $\alpha^*(t, Y_t, V)$ , where

$$\alpha^*(t, y, v) := \sigma^2 \frac{\rho_y(t, y, v)}{\rho(t, y, v)},\tag{7}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - わへで

implying an *h*-transformation in making!

• Moreover, the hypothesis on  $J^0$  implies H solves heat equation, which in turn requires  $\widehat{\alpha^*} \equiv 0$ .

The above implies the optimal control of the insider is  $\alpha^*(t, Y_t, V)$ , where

$$\alpha^*(t, \mathbf{y}, \mathbf{v}) := \sigma^2 \frac{\rho_{\mathbf{y}}(t, \mathbf{y}, \mathbf{v})}{\rho(t, \mathbf{y}, \mathbf{v})},\tag{7}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - わへで

implying an *h*-transformation in making!

- Moreover, the hypothesis on  $J^0$  implies H solves heat equation, which in turn requires  $\widehat{\alpha^*} \equiv 0$ .
- Let's denote the distribution of *V* by  $\Pi$ , and observe that if  $\rho(t, Y_t, v)\Pi(dv) = \mathbb{P}(V \in dv | \mathcal{F}_t^Y)$ , then *Y* is a martingale in its own filtration

The above implies the optimal control of the insider is  $\alpha^*(t, Y_t, V)$ , where

$$\alpha^*(t, y, v) := \sigma^2 \frac{\rho_y(t, y, v)}{\rho(t, y, v)},\tag{7}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - わへで

implying an *h*-transformation in making!

- Moreover, the hypothesis on  $J^0$  implies H solves heat equation, which in turn requires  $\widehat{\alpha^*} \equiv 0$ .
- Let's denote the distribution of V by Π, and observe that if ρ(t, Y<sub>t</sub>, v)Π(dv) = ℙ(V ∈ dv|𝓕<sup>Y</sup><sub>t</sub>), then Y is a martingale in its own filtration since I

$$\mathbb{E}\Big[\frac{\rho_{y}(t, Y_{t}, V)}{\rho(t, Y_{t}, V)}\Big|\mathcal{F}_{t}^{Y}\Big] = \int \rho_{y}(t, Y_{t}, v)\Pi(dv)$$
$$= \frac{d}{dy}\int \rho(t, y, v)\Pi(dv)\Big|_{y=Y_{t}} = 0,$$

#### **Proposition 1**

Suppose that there exists a continuous function  $j^0$  such that  $\rho(0,0,\cdot) \equiv 1$ , where  $\rho$  is defined via (6). Assume further that there exists a unique strong solution on  $(\Omega, \mathcal{G}, (\mathcal{G}_t)_{t \in [0,1]}, \mathbb{Q})$  to

$$m{Y}_t = \sigma m{B}_t + \int_0^t \sigma^2 rac{
ho_y(m{s},m{Y}_m{s},m{V})}{
ho(m{s},m{Y}_m{s},m{V})} dm{s}$$

such that

$$\mathbb{E}^{\mathbb{Q}}\left[\int_{0}^{t} \left(\frac{\rho_{\mathcal{Y}}(\boldsymbol{s}, \boldsymbol{Y}_{\boldsymbol{s}}, \boldsymbol{V})}{\rho(\boldsymbol{s}, \boldsymbol{Y}_{\boldsymbol{s}}, \boldsymbol{V})}\right)^{2}\right] < \infty, \quad t \in [0, 1].$$
(8)

Then,

$$\rho(t, Y_t, v) \Pi(dv) = \mathbb{P}(V \in dv | \mathcal{F}_t^Y), \quad t \in [0, 1].$$

#### A recipe for equilibrium

Find a continuous function  $j^0$  such that i)  $\rho(0, 0, \cdot) \equiv 1$ , where  $\rho$  is given by (6), and ii) it is differentiable in its first parameter with  $j_y^0(y, v) = h(y) - v$ . Note that the first condition entails

$$\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right) \exp\left(-\frac{j^0(y,v)}{\sigma^2 c}\right) dy = 1, \qquad \forall v.$$
(9)

2 Set

$$H_t + \frac{1}{2}\sigma^2 H_{yy} = 0, \qquad H(1, y) = h(y).$$

3 Show that  $(H, \theta^*)$  with  $d\theta_t^* = \sigma^2 \frac{\rho_y(t, Y_t, V)}{\rho(t, Y_t, V)} dt$  is equilibrium provided they are admissible by using the candidate value function  $J = J^0 + u$  that satisfies (2).

The Kyle model without frictions Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading Conclusion

#### Emergence of Schrödinger potentials



Kyle and penalties

**Notation:**  $\hat{c} := c\sigma^2$ . That  $j_y^0 = h(y) - v$  for some *h* to be determined implies we are searching for a  $j^0$  such that

$$j^{0}(y, v) = \Psi(v) + \phi(y) - yv.$$
 (10)

(日) (四) (E) (E) (E) (E)

**Notation:**  $\hat{c} := c\sigma^2$ . That  $j_y^0 = h(y) - v$  for some *h* to be determined implies we are searching for a  $j^0$  such that

$$j^{0}(y, v) = \Psi(v) + \phi(y) - yv.$$
 (10)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Next, since exp(−j<sup>0</sup>(y, v)/ĉ)Π(dv) is the conditional distribution of V given Y<sub>1</sub> = y, it must integrate to 1:

$$\int_{f(\mathbb{R})} \exp\left(\frac{yv - \Psi(v)}{\hat{c}}\right) \Pi(dv) = \exp\left(\frac{\phi(y)}{\hat{c}}\right)$$

**Notation:**  $\hat{c} := c\sigma^2$ . That  $j_y^0 = h(y) - v$  for some *h* to be determined implies we are searching for a  $j^0$  such that

$$j^{0}(y, v) = \Psi(v) + \phi(y) - yv.$$
 (10)

Next, since exp(−j<sup>0</sup>(y, v)/ĉ)Π(dv) is the conditional distribution of V given Y<sub>1</sub> = y, it must integrate to 1:

$$\int_{f(\mathbb{R})} \exp\left(\frac{yv - \Psi(v)}{\hat{c}}\right) \Pi(dv) = \exp\left(\frac{\phi(y)}{\hat{c}}\right)$$

Moreover, (9) is equivalent to

$$\int_{\mathbb{R}} \exp\Big(rac{y oldsymbol{
u} - \phi(oldsymbol{y})}{oldsymbol{\hat{c}}} \Big) oldsymbol{
ho}(\sigma,oldsymbol{y}) oldsymbol{d} oldsymbol{y} = \exp\Big(rac{\Psi(oldsymbol{
u})}{oldsymbol{\hat{c}}} \Big),$$

where  $p(\sigma \cdot \cdot)$  is the density of  $N(0, \sigma^2)$ .

**Notation:**  $\hat{c} := c\sigma^2$ . That  $j_y^0 = h(y) - v$  for some *h* to be determined implies we are searching for a  $j^0$  such that

$$j^{0}(y, v) = \Psi(v) + \phi(y) - yv.$$
 (10)

Next, since exp(-j<sup>0</sup>(y, v)/ĉ)Π(dv) is the conditional distribution of V given Y<sub>1</sub> = y, it must integrate to 1:

$$\int_{f(\mathbb{R})} \exp\left(\frac{yv - \Psi(v)}{\hat{c}}\right) \Pi(dv) = \exp\left(\frac{\phi(y)}{\hat{c}}\right)$$

Moreover, (9) is equivalent to

$$\int_{\mathbb{R}} \exp\Big(\frac{yv - \phi(y)}{\hat{c}}\Big) p(\sigma, y) dy = \exp\Big(\frac{\Psi(v)}{\hat{c}}\Big),$$

where  $p(\sigma \cdot \cdot)$  is the density of  $N(0, \sigma^2)$ .

Thus, if they exist,  $\phi/\hat{c}$  and  $\Psi/\hat{c}$  are the *unique* potentials of the entropic optimal transport problem from  $N(0, \sigma^2)$  to  $\Pi$  with the quadratic "cost function"  $\frac{1}{2\hat{c}}(x - y)^2$ . The Kyle model without frictions Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading Conclusion

#### Existence of solutions

Given the positivity of the cost function, the associated entropic optimal transport problem has a solution (see lecture notes by M. Nutz) with the potentials φ and Ψ solving the Schrödinger equations

$$\phi(y) = \hat{c} \log \int_{f(\mathbb{R})} \exp\left(\frac{yv - \Psi(v)}{\hat{c}}\right) \Pi(dv),$$
  

$$\Psi(v) = \hat{c} \log \int_{\mathbb{R}} \exp\left(\frac{yv - \phi(y)}{\hat{c}}\right) \rho(\sigma, y) dy.$$
(11)

• Moreover,  $\mathbb{E}[|\phi(\sigma B_1)| + |\Psi(V)|] < \infty$ .

・ロト ・日 ・ ・ ヨト

## Differentiability of solutions

- Assume that V has all exponential moments. Then it is a simple exercise to show that φ and Ψ are infinitely differentiable.
- Moreover, one can also show that they are strictly convex and bounded from below.

#### **Differentiability of solutions**

- Assume that V has all exponential moments. Then it is a simple exercise to show that φ and Ψ are infinitely differentiable.
- Moreover, one can also show that they are strictly convex and bounded from below.
- In particular,

$$\phi'(\mathbf{y}) = \int \mathbf{v}\nu_{\Psi}(d\mathbf{v}), \ \phi''(\mathbf{y}) = \frac{1}{\hat{c}} \Big( \int \mathbf{v}^2 \nu_{\Psi}(d\mathbf{v}) - \Big( \int \mathbf{v}\nu_{\Psi}(d\mathbf{v}) \Big)^2 \Big),$$
(12)

where

$$\nu_{\Psi}(dv) = \frac{\exp\left(\frac{yv - \Psi(v)}{\hat{c}}\right) \Pi(dv)}{\int \exp\left(\frac{yv - \Psi(v)}{\hat{c}}\right) \Pi(dv)}.$$

#### Differentiability of solutions

- Assume that V has all exponential moments. Then it is a simple exercise to show that φ and Ψ are infinitely differentiable.
- Moreover, one can also show that they are strictly convex and bounded from below.
- In particular,

$$\phi'(\mathbf{y}) = \int \mathbf{v}\nu_{\Psi}(d\mathbf{v}), \ \phi''(\mathbf{y}) = \frac{1}{\hat{c}} \Big( \int \mathbf{v}^2 \nu_{\Psi}(d\mathbf{v}) - \Big( \int \mathbf{v}\nu_{\Psi}(d\mathbf{v}) \Big)^2 \Big),$$
(12)

where

$$\nu_{\Psi}(dv) = \frac{\exp\left(\frac{yv - \Psi(v)}{\hat{c}}\right) \Pi(dv)}{\int \exp\left(\frac{yv - \Psi(v)}{\hat{c}}\right) \Pi(dv)}.$$

Note: ν<sub>Ψ</sub> will be the conditinal distribution of V given Y<sub>1</sub> in equilibrium!

#### Gaussian case

#### Suppose that $V \sim N(\mu, \gamma^2)$ .

▲ロト ▲園ト ▲臣ト ▲臣ト 三臣 … のへで

#### Gaussian case

- Suppose that  $V \sim N(\mu, \gamma^2)$ .
- One expects  $H^*(t, y) = \lambda y + \mu$  for some  $\lambda > 0$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Gaussian case

- Suppose that  $V \sim N(\mu, \gamma^2)$ .
- One expects  $H^*(t, y) = \lambda y + \mu$  for some  $\lambda > 0$ .
- Given that H\*(1, ·) is φ's derivative, combined with a normalisation that φ\*(0) = 0, one expects that φ\*(y) = <sup>λy<sup>2</sup></sup>/<sub>2</sub> + µy. Indeed,

#### Gaussian case

Suppose that 
$$V \sim N(\mu, \gamma^2)$$
.

- One expects  $H^*(t, y) = \lambda y + \mu$  for some  $\lambda > 0$ .
- Given that H\*(1, ·) is φ's derivative, combined with a normalisation that φ\*(0) = 0, one expects that φ\*(y) = λy²/2 + μy. Indeed,
   φ\*(y) = λ\*y²/2 + μy for

$$\lambda^* = \frac{-c + \sqrt{c^2 + 4\frac{\gamma^2}{\sigma^2}}}{2}.$$
 (13)

Moreover,

$$\Psi^{*}(v) = \frac{\hat{c}}{2} \log \frac{c}{c+\lambda^{*}} + \frac{(\mu-v)^{2}}{2(c+\lambda^{*})}.$$
 (14)

The Kyle model without frictions Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading Conclusion

# Equilibrium for the Kyle-Back model with penalties

Kyle and penalties

- Now, denote the solution of (11) by (φ\*, Ψ\*) with the normalisation that φ\*(0) = 0.
- Next define

$$H^*(t, \mathbf{y}) = \int \rho^*(t, \mathbf{y}, \mathbf{z}) \mathbf{z} \Pi(d\mathbf{z}), \tag{15}$$

where

$$\rho^*(t, y, v) := E^v \Big[ \exp\Big( -\frac{j^*(\sigma B_1, v)}{\hat{c}} \Big) \Big| \sigma B_t = y \Big].$$
(16)

Observe that

$$H_t^* + \frac{\sigma^2}{2} H_{yy}^* = 0, \qquad H^*(1, \cdot) = h^* = \frac{d\phi^*}{dy}.$$
 (17)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

■ Then  $(H^*, \theta^*)$  is an equilibrium where

$$d\theta_t^* = \sigma^2 \frac{\rho_y^*(t, Y_t, V)}{\rho^*(t, Y_t, V)} dt, t \in [0, 1], \text{ and } \theta_0^* = 0.$$
 (18)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

■ Then  $(H^*, \theta^*)$  is an equilibrium where

$$d\theta_t^* = \sigma^2 \frac{\rho_y^*(t, Y_t, V)}{\rho^*(t, Y_t, V)} dt, t \in [0, 1], \text{ and } \theta_0^* = 0.$$
 (18)

Informed trader's expected profit is given by

$$E^{0,\nu}[W_1^{\theta^*}] = J(0,0) = \Psi^*(\nu) + E^{0,\nu}[\phi^*(\sigma B_1)].$$
(19)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

■ Then  $(H^*, \theta^*)$  is an equilibrium where

$$d\theta_t^* = \sigma^2 \frac{\rho_y^*(t, Y_t, V)}{\rho^*(t, Y_t, V)} dt, t \in [0, 1], \text{ and } \theta_0^* = 0.$$
 (18)

Informed trader's expected profit is given by

$$E^{0,\nu}[W_1^{\theta^*}] = J(0,0) = \Psi^*(\nu) + E^{0,\nu}[\phi^*(\sigma B_1)].$$
(19)

The price inefficiency of the equilibrium, denoted by δ, is given by

$$\delta := \mathbb{E}[\operatorname{Var}(V|\mathcal{F}_1^{Y^*})] = \hat{c} \mathbb{E}\Big[\frac{d^2\phi^*}{dy^2}(Y_1^*)\Big].$$
(20)

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

#### Alternative representation of the optimal strategy

Suppose  $H^*(1, \cdot)$  is of at most exponential growth. Then,

$$\alpha_t^* := \frac{d\theta_t^*}{dt} = \frac{1}{c} (v - E^{0,v} [h^*(Y_1^*) | \mathcal{F}_t']),$$
(21)

▲ロト ▲団ト ▲国ト ▲国ト 三国 - のへで

with  $E^{0,v}[h(Y_1^*)|\mathcal{F}_t^{l}] = \mathcal{P}(t, Y_t^*; v)$ , where

$$\mathcal{P}(t, y; v) = \frac{\int_{\mathbb{R}} h^*(x) \exp(\frac{vx - \phi^*(x)}{\hat{c}}) p(\sigma\sqrt{1 - t}, x - y)) dx}{\int_{\mathbb{R}} \exp(\frac{vx - \phi^*(x)}{\hat{c}}) p(\sigma\sqrt{1 - t}, x - y)) dx}$$

#### Alternative representation of the optimal strategy

Suppose  $H^*(1, \cdot)$  is of at most exponential growth. Then,

$$\alpha_t^* := \frac{d\theta_t^*}{dt} = \frac{1}{c} (\nu - E^{0,\nu} [h^*(Y_1^*) | \mathcal{F}_t^{\prime}]), \qquad (21)$$

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

with  $E^{0,v}[h(Y_1^*)|\mathcal{F}_t^{l}] = \mathcal{P}(t, Y_t^*; v)$ , where

$$\mathcal{P}(t, y; v) = \frac{\int_{\mathbb{R}} h^*(x) \exp(\frac{vx - \phi^*(x)}{\hat{c}}) p(\sigma \sqrt{1 - t}, x - y)) dx}{\int_{\mathbb{R}} \exp(\frac{vx - \phi^*(x)}{\hat{c}}) p(\sigma \sqrt{1 - t}, x - y)) dx}$$

Thus, insider trades on the differential between her private signal and the expected terminal price, and trades aggressively if the penalty, i.e. c, is small.

#### Connection with *h*-transforms

Consider the SDE associated to the equilibrium demand:

$$Y_t^* = \sigma B_t + \sigma^2 \int_0^t \frac{\rho_y^*(s, Y_s^*, v)}{\rho^*(s, Y_s, v)} ds.$$
 (22)

▲ロト ▲団ト ▲国ト ▲国ト 三国 - のへで

■ Let Q\* be the law induced by Y\* on the space of continuous functions on [0, 1] vanishing at 0.

#### Connection with *h*-transforms

Consider the SDE associated to the equilibrium demand:

$$Y_t^* = \sigma B_t + \sigma^2 \int_0^t \frac{\rho_y^*(s, Y_s^*, v)}{\rho^*(s, Y_s, v)} ds.$$
 (22)

Let Q\* be the law induced by Y\* on the space of continuous functions on [0, 1] vanishing at 0.

Let (B<sub>t</sub>)<sub>t∈[0,1]</sub> be the right continuous augmentation of the natural filtration of the coordinate process X, and W be the Wiener measure.

#### Connection with *h*-transforms

Consider the SDE associated to the equilibrium demand:

$$Y_t^* = \sigma B_t + \sigma^2 \int_0^t \frac{\rho_y^*(s, Y_s^*, v)}{\rho^*(s, Y_s, v)} ds.$$
 (22)

- Let Q\* be the law induced by Y\* on the space of continuous functions on [0, 1] vanishing at 0.
- Let (B<sub>t</sub>)<sub>t∈[0,1]</sub> be the right continuous augmentation of the natural filtration of the coordinate process X, and W be the Wiener measure.
- Then Q\* is given by the following *h*-transform of Brownian motion:

$$\mathbb{E}^{\mathbb{Q}^*}[F] = \frac{\mathbb{E}^{\mathbb{W}}\left[F\exp\left(\frac{v\sigma X_1 - \phi^*(\sigma X_1)}{\hat{c}}\right)\right]}{\mathbb{E}^{\mathbb{W}}\left[\exp\left(\frac{v\sigma X_1 - \phi^*(\sigma X_1)}{\hat{c}}\right)\right]}, \quad F \in \mathcal{B}_1.$$
(23)

< ロト < 部ト < ヨト < ヨト 三 ヨー

#### Relative entropy of the *h*-transform

- The relative entropy of the above change of measure is not only finite but can be computed explicitly.
- Indeed,

$$H(\mathbb{Q}^*||\mathbb{W}) = \frac{v(\Psi^*)'(v) - \Psi^*(v) - E^{0,v}[\phi^*(Y_1^*)]}{\hat{c}}$$

Consequently, the insider expects to the following penalty in equilibrium:

$$v(\Psi^*)'(v) - \Psi^*(v) - E^{0,v}[\phi^*(Y_1^*)].$$

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

## Back to the Gaussian case

For a better parametrisation suppose c = κ<sup>γ</sup>/<sub>σ</sub>.
 Then

$$dY_t^* = \sigma dB_t + \Lambda(\kappa)\sigma \frac{\frac{V-\mu}{\gamma} - \frac{\Lambda(\kappa)Y_t^*}{\sigma}}{1 - t\Lambda^2(\kappa)} dt,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where 
$$\Lambda(\kappa) = \frac{\sqrt{\kappa^2 + 4 - \kappa}}{2}$$
.  
 $\lambda^* = \Lambda(\kappa) \frac{\gamma}{\sigma}$ .

#### Back to the Gaussian case

For a better parametrisation suppose c = κ<sup>γ</sup>/<sub>σ</sub>.
 Then

$$dY_t^* = \sigma dB_t + \Lambda(\kappa)\sigma \frac{\frac{V-\mu}{\gamma} - \frac{\Lambda(\kappa)Y_t^*}{\sigma}}{1 - t\Lambda^2(\kappa)} dt,$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

where 
$$\Lambda(\kappa) = \frac{\sqrt{\kappa^2 + 4} - \kappa}{2}$$
.  
 $\lambda^* = \Lambda(\kappa) \frac{\gamma}{\sigma}$ .

Y<sup>\*</sup> is a martingale for market makers, but it is an O-U process mean reverting around <sup>(V−μ)σ</sup>/<sub>γΛ(κ)</sub> for the insider.

#### Back to the Gaussian case

For a better parametrisation suppose c = κ<sup>γ</sup>/<sub>σ</sub>.
 Then

$$dY_t^* = \sigma dB_t + \Lambda(\kappa)\sigma \frac{\frac{V-\mu}{\gamma} - \frac{\Lambda(\kappa)Y_t^*}{\sigma}}{1 - t\Lambda^2(\kappa)} dt,$$

where 
$$\Lambda(\kappa) = \frac{\sqrt{\kappa^2 + 4} - \kappa}{2}$$
  
 $\lambda^* = \Lambda(\kappa) \frac{\gamma}{\sigma}$ .

Y\* is a martingale for market makers, but it is an O-U process mean reverting around <sup>(V−μ)σ</sup>/<sub>γΛ(κ)</sub> for the insider.

As  $\kappa \to 0$ ,  $Y^*$  converges to

$$dY_t^* = \sigma dB_t + \sigma \frac{\frac{V-\mu}{\gamma} - \frac{Y_t^*}{\sigma}}{1-t} dt_t^*$$

that is,  $\frac{Y^*}{\sigma}$  becomes a Brownian bridge from 0 to  $\frac{V-\mu}{\gamma}$ .

In the above Gaussian setting

$$\alpha_t^* \sim N\Big(\frac{V-\mu}{\gamma}\Lambda(\kappa)\sigma, \frac{t\sigma^2\Lambda^4(\kappa)}{1-t\Lambda^2(\kappa)}\Big).$$

That is, the rate of trading is constant on average over the trading horizon.

▲ロト ▲団ト ▲国ト ▲国ト 三国 - のへで

In the above Gaussian setting

$$\alpha_t^* \sim N\Big(\frac{V-\mu}{\gamma}\Lambda(\kappa)\sigma, \frac{t\sigma^2\Lambda^4(\kappa)}{1-t\Lambda^2(\kappa)}\Big).$$

That is, the rate of trading is constant on average over the trading horizon.

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

As κ → ∞, Λ → 0. Thus, even after normalizing the insider's trades by Λ(κ), the standard deviation of the trading rate remains small, that is, order of Λ(κ).

In the above Gaussian setting

$$\alpha_t^* \sim N\Big(\frac{V-\mu}{\gamma}\Lambda(\kappa)\sigma, \frac{t\sigma^2\Lambda^4(\kappa)}{1-t\Lambda^2(\kappa)}\Big).$$

That is, the rate of trading is constant on average over the trading horizon.

- As κ → ∞, Λ → 0. Thus, even after normalizing the insider's trades by Λ(κ), the standard deviation of the trading rate remains small, that is, order of Λ(κ).
- Thus, the insider buys (sells) at the constant rate <sup>|V-μ|</sup>/<sub>γ</sub>Λ(κ)σ if her private value is greater (smaller) than the initial price, μ, of the asset.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Expected penalties are non-monotone

Insider's expected wealth is decreasing in  $\kappa$ . However, the expected penalty is not monotone!

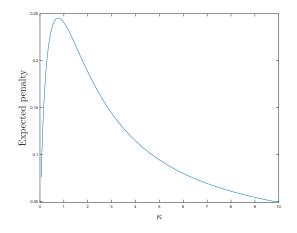


Figure: Expected penalties in equilibrium normalised by  $\gamma \sigma$ .

(日) (四) (王) (王) (王)

The Kyle model without frictions Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading

Conclusion

## Regulating insider trading



Kyle and penalties

< □ > < □ > < □ > < □ > < □ >

æ

## Regulator's dilemma

Suppose V is Gaussian, and the regulator has the following simple objective:

$$\min_{\kappa} \Lambda(\kappa) \gamma \sigma + R \kappa \Lambda(\kappa) \gamma^{2},$$
subject to  $-\frac{\gamma \sigma}{2} \kappa \log(\kappa \Lambda(\kappa)) \ge b,$ 
(24)

for some R > 0 and b > 0.

## Regulator's dilemma

Suppose V is Gaussian, and the regulator has the following simple objective:

$$\min_{\kappa} \Lambda(\kappa) \gamma \sigma + R \kappa \Lambda(\kappa) \gamma^{2},$$
subject to  $-\frac{\gamma \sigma}{2} \kappa \log(\kappa \Lambda(\kappa)) \ge b,$ 
(24)

for some R > 0 and b > 0.

Note that the first term is the expected loss of the noise traders and the second is the expected post-trade variance adjusted by the factor *R*, which measures the sensitivity of the policy toward price efficiency.

## Regulator's dilemma

Suppose V is Gaussian, and the regulator has the following simple objective:

$$\min_{\kappa} \Lambda(\kappa) \gamma \sigma + R \kappa \Lambda(\kappa) \gamma^{2},$$
subject to  $-\frac{\gamma \sigma}{2} \kappa \log(\kappa \Lambda(\kappa)) \ge b,$ 
(24)

for some R > 0 and b > 0.

- Note that the first term is the expected loss of the noise traders and the second is the expected post-trade variance adjusted by the factor *R*, which measures the sensitivity of the policy toward price efficiency.
- Since the expected penalties are bounded, if

$$b^0 := rac{b}{\gamma\sigma} < ar{P} := \sup -rac{1}{2}\kappa\log(\kappa\Lambda(\kappa)),$$

the budget constraint cannot be satisfied. Then it can be shown that if the amount of noise trading is rather small, the regulator does not run an investigation. • Now suppose  $b^0 \ge \overline{P}$ . Define

$$\mathcal{K}(\boldsymbol{a}) := \{\kappa : -\kappa \log(\kappa \Lambda(\kappa)) \ge \boldsymbol{a}\}.$$
 (25)

• Then the optimal penalty rate is  $c^* := \kappa^* \frac{\gamma}{\sigma}$ , where

$$\kappa^* = \arg\min_{\kappa \in \mathcal{K}(b_0)} \Lambda(\kappa) + R \frac{\gamma}{\sigma} (1 - \Lambda^2(\kappa)).$$
 (26)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

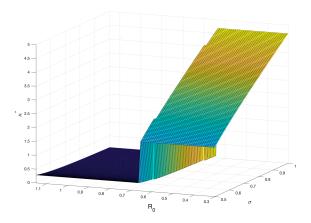


Figure: The optimal penalty rate  $\kappa^*$  as a function of noise volatility  $\sigma$ , and the regulator's sensitivity toward price efficiency,  $R_0 = R_{\sigma}^{\gamma}$ . The figure assumes  $\gamma = 1$  and b = 0.1.

The Kyle model without frictions Kyle model with penalties Emergence of Schrödinger potentials Equilibrium for the Kyle-Back model with penalties Regulating insider trading Conclusion

## Conclusion



Kyle and penalties

< ロ > < 部 > < き > < き >

Э

#### Conclusion

- Solved in continuous time the extension of the Kyle model with penalties on insider trading.
- The solution reveals an interesting connection between quadratic BSDEs and h-transforms, where the terminal condition of the BSDE is determined in equilibrium.
- One can use this setup to solve the regulators's problem with the objective to minimise uninformed traders losses but also keep the informational efficiency above a certain level. For details, see

U. Çetin, *Insider trading with legal risk in continuous time*, SSRN preprint.

#### Conclusion

- Solved in continuous time the extension of the Kyle model with penalties on insider trading.
- The solution reveals an interesting connection between quadratic BSDEs and h-transforms, where the terminal condition of the BSDE is determined in equilibrium.
- One can use this setup to solve the regulators's problem with the objective to minimise uninformed traders losses but also keep the informational efficiency above a certain level. For details, see
  - U. Çetin, *Insider trading with legal risk in continuous time*, SSRN preprint.
- Extension to general convex cost functions will be of great interest as it is important for the regulator to decide the best cost functional to regulate insider trading.