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This article evaluates if and to which extent policy can steer innovation towards eco-friendly
technologies. We construct a cross-country dataset on sectoral green innovation and complement
it with data on policies designed to address environmental market failures: environmental
taxes, regulation, and R&D subsidies. While all of these tools exert a positive effect on green
innovation, our IV estimates reveal substantial heterogeneities across policies. Overall, green
innovation reacts most strongly to R&D subsidies for renewables, but interaction effects between
different policies need to be considered.

. Introduction

There is now a universal consensus that climate change is anthropogenic and that its consequences are appearing faster and
etting more severe (IPCC, 2022). In order to comply with the goals set forth in the Paris Agreement and to limit the increase
n average global temperatures to 1.5 ◦C, policy makers need to guide consumers and companies towards a zero net-emission
conomy (Parry, 2020). Unfortunately, current technologies and mere behavioral changes will likely not be sufficient to achieve
his task (IEA, 2020). New technologies will be decisive in attaining the required reductions in emissions and therefore, it is crucial
o introduce efficient policies and research incentives as soon as possible. This paper studies which measures can steer innovation
owards a greener path.

Most economists agree that the optimal policy to combat climate change is a combination of a carbon tax (or price) and research
ubsidies for green technologies (Acemoglu et al., 2012). A carbon price addresses the environmental externality, but does not
chieve a first-best outcome (i.e. it does not minimize total consumption costs over the horizon of the policy), since it neglects the
&D externality (the social value of an innovation exceeds its private value). Thus, an R&D subsidy is required to raise innovation

o the socially optimal level. Furthermore, since incumbent technologies relying on fossil fuels have been developed and optimized
or a long time, they enjoy a productivity advantage over more recent, clean technologies. Thus, the research subsidy should be
igh enough to compensate this disadvantage and steer innovation towards green technologies.

Such a policy mix would internalize both the environmental externality, by putting a price on emissions, and the R&D externality,
y subsidizing R&D as an optimal response to the public good nature of knowledge and to overcome the path dependency of
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innovation.2 Most importantly, such a mix of policies would direct technological change towards green technologies needed to
achieve the world’s climate goals. However, due to a lack of political feasibility, these policies are not implemented by a majority
of countries. Most countries either do not collect carbon taxes at all or do not set them sufficiently high.3 Moreover, while nearly
all countries grant research subsidies specifically for green technologies, these subsidies are currently not high enough.4 Instead,
essentially all countries revert to regulating CO2 emitting technologies and activities.5

Our knowledge about which policy instruments are successful in directing technological change towards green innovation is
limited. The fact that environmental policy tools – taxation/pricing, regulation and R&D subsidies – are used widely without robust
estimates of their individual and interaction effects on directed technical change is worrying. This paper aims to contribute to this
issue by analyzing the effects of environmental taxes, green research subsidies, and environmental regulation on green patenting
activity in a cross-country, cross-industry panel setup. Specifically, we construct a dataset measuring green patenting activity at
the country/sector/year level of observation for all of Europe, as well as the US and Canada. We use newly defined categories
of innovation, allowing us to identify patents related to green technologies (Veefkind et al., 2012) and link these technologies to
different sectors of the economy (Dorner and Harhoff, 2018).

Our empirical approach allows for environmental policies to be endogenously determined by using instrumental variables (IV)
estimation, based on Hausman style instruments and a 2SLS estimation approach. We find encouraging results: all three policies
– environmental taxes, environmental regulation and state-subsidized R&D in green technologies – significantly direct innovation
towards green patenting. Doubling environmental taxes in an industry, on average increases green patenting by 6.7%. Doubling the
stringency of environmental regulation in a NACE2 industry sparks a 16.4% increase in green patenting. Doubling direct state R&D
subsidies leads to a 9% increase in green patent applications. An increase of R&D tax deductions by 1 percentage point increases
green patent applications by 0.3%.

These clear-cut results, however, mask heterogeneous effects as well as interaction – or spillover – effects between the policies
considered. For example, while the impact of environmental policies appears to be similar in North America and the EU, we find
that their impact has strongly increased in more recent years. When investigating spillover effects, we find evidence for substitutive
effects between environmental policies. In particular, R&D subsidies for green innovation appear to be less effective when applied
in conjunction with environmental regulation.

We further investigate sub-categories of the three main policies considered. Among environmental taxes, energy taxes most
strongly affect green patents. When it comes to R&D subsidies, subsidies for renewable energy are especially effective in inducing
green patenting. Market-based (MB) regulations have a positive effect, while the impact of non-market-based (NMB) regulations
remains insignificant.

We contribute to the literature on directed technological change, which is constrained by a lack of comprehensive, broad-picture
evaluations. To our knowledge, there is no paper that evaluates multiple policy tools in a cross-sector, cross-country dataset over
time. Given the worldwide dimension of climate change and the heterogeneity of industrial activity, this appears to be a severe
limitation.

The rest of this paper is organized as follows. In the next section we review the relevant literature. Section 3 briefly discusses
the sources of externalities and the channels through which policy can influence the path of innovation. Section 4 describes the
construction of the dataset, while the empirical strategy is detailed in Section 5. Results of the empirical analysis are discussed in
Sections 6 and 7 concludes.

2. Literature review

In a closely related study, Aghion et al. (2016) use patents to estimate the effect of fuel prices on innovation in the automobile
sector. The authors distinguish ‘‘green’’ (e.g. electric and hybrid vehicles), ‘‘grey’’ (e.g. energy efficiency increasing) and ‘‘dirty’’
(e.g. internal combustion) patents. Two main channels influence innovation activities: market size and (relative) prices. Innovation
is directed to larger markets and to markets with higher prices. As the market for fossil fuels is one of the largest sectors, it attracts
innovation over-proportionally. Green innovation is more expensive and therefore the gap between dirty and green innovation is
not closed. Increasing fuel prices leads to more innovation in green technology, with an estimated elasticity of 0.97.

One of the first empirical studies dealing with innovation in the automobile sector is Crabb and Johnson (2010). It estimates the
effects of expected oil prices and fuel economy regulations on energy efficient automotive patents from 1980–1999 in the United

2 The optimal policy would also include a carbon trade tax in the face of possible leakage problems, see e.g. Hémous (2021).
3 For example, the Economist (2021) estimates that only 20% of global emissions are currently subject to a pricing scheme. In existing schemes, the median

onne of carbon emissions is priced at only 15$, way below all estimates of the social costs of carbon (SCC), most of which are beyond 50$. In February 2021,
hina’s carbon trading market went live, however, coverage and price are still insufficient. In the USA, there is no carbon tax/price on a country wide basis, and
nly some states (e.g. California and the Regional Greenhouse Gas Initiative) have implemented carbon pricing schemes. In the EU, the carbon price surpassed
50 for the first time in 2021 and e100 in 2023, but was very low for over decade before that. The most notable exceptions are Sweden, Switzerland, and
orway, charging more than 100e, per tonne of CO2. However, even in these countries there are many exemptions from carbon taxation.

4 For example, Acemoglu et al. (2016, p.91) state that the (relative) research subsidy of 43% in the US is ‘‘insufficient to redirect technological change
owards clean with no carbon taxes’’.

5 Regulation on carbon emissions can take many forms. One useful distinction is between non-market-based and market-based regulation. Non-market-based
egulation is characterized by specific state-imposed targets, limits or performance standards, which must be reached by producers or consumers within a certain
ime period. An example for this type of regulation is the EU’s fleet regulation of passenger cars. Market-based regulation is characterized by using market-based
echanisms to reduce CO2 emissions. An example is the EU ETS pricing of emissions.
2



Journal of Environmental Economics and Management 124 (2024) 102916K. Gugler et al.

1
H
m
e
t
b
b
i

a
p
s
c
a
p
d

s
m
c
u
u
r
p

t
c

p
a
b
(
s

c
o
r
l
t
t

3

o
n
s
t
o

k
r

States. Findings show an elasticity of 0.24 between oil prices and patents, but no effects of fuel economy standards. We corroborate
these findings in that we also find a positive sensitivity of green patents to fossil fuel prices and a lower effectiveness of NMB
regulation.

Most studies find that market-based policies are more effective for innovation than other policy instruments (Magat, 1978,
979; Milliman and Prince, 1989). Non-market-based policies penalize polluters but they do not reward emission efficient actors.
owever, Baumann and Lee (2008) show that under certain scenarios NMB regulations could lead to more innovation. MB policies
ay be more efficient if technologies are ‘close to the market’. Wind energy, for example, is almost competitive with fossil fuel

nergy, since costs are already relatively low. Therefore, firms may be induced to invest in technologies which are relatively close
o the market if a carbon price or tax additionally tips relative prices in their favor. Innovation in carbon capture, in contrast, may
e further ‘away from the market’, therefore direct investment incentives/imperatives – such as induced by NMB regulations – may
e more effective (Johnstone et al., 2010). We find that market based regulation increases green patenting across a broad range of
ndustries.

On the micro level, Fischer and Newell (2008) and Gerlagh and Van der Zwaan (2006) evaluate a broader set of policies. Fischer
nd Newell (2008) evaluate emission-reducing policies in the energy sector and rank them in order of cost effectiveness: (1) emission
rice (most effective), (2) emission performance standard, (3) fossil power tax, (4) renewable share requirement, (5) renewable
ubsidy and (6) R&D subsidy. They show that a combination of emission pricing and R&D subsidies achieve significantly lower
osts than any other policy. Gerlagh and Van der Zwaan (2006) using a top-down energy-economy model, in contrast, find that
carbon intensity portfolio standard (involving the recycling of carbon taxes to support renewables deployment) is the cheapest

olicy to reach different carbon stabilization goals. However, the Fischer and Newell (2008) and Gerlagh and Van der Zwaan (2006)
o not analyze the effects of regulation on innovation.

Jaffe and Palmer (1997) estimate the relationship between (lagged) environmental compliance expenditures (a proxy for the
tringency of environmental regulation) and total R&D expenditures, as well as the number of successful patent applications in U.S.
anufacturing. They found a positive link with R&D expenditures (an increase of 0.15% in R&D expenditures for a compliance

ost increase of 1%), but no statistically significant link with the number of patents. The analysis of Lanoie et al. (2011) draws
pon a database that includes observations from approximately 4200 facilities in seven OECD countries. In general, the authors
sing questionnaire analysis find strong support for the ‘‘weak’’ version of the Porter hypothesis according to which more stringent
egulation increases R&D expenditures. More flexible ‘‘performance standards’’ are more likely to induce innovation than more
rescriptive ‘‘technology-based standards’’.

Calel and Dechezlepretre (2016) address the effect of the EU ETS on directed technological change. The authors show (1)
hat innovation increases if the EU ETS price rises and (2) innovation by firms not covered by the ETS is not influenced by the
ap-and-trade system. This is in line with our findings on the positive effects of carbon taxes and MB regulation on green patents.

Recently, Palage et al. (2019) find that renewable energy support policies for the solar photovoltaics (PV) technology increase
atenting. For 13 countries over the 1978–2008 period, the analysis addresses one technology-push instrument, public R&D support,
nd two demand-pull instruments, feed-in tariffs (FIT) and renewable energy certificate (REC) schemes. The results indicate that: (a)
oth FIT and REC schemes induce solar PV patenting activity, but the impact of the former policy appears to be more profound; and
b) – consistent with our results – public R&D support has overall been more influential than FIT and REC schemes in encouraging
olar PV innovation. A comprehensive survey of the empirical literature in this field is provided by Popp (2019).

Summarizing, the evidence on whether environmental policies direct technological change towards green innovation is en-
ouraging. However, the literature so far lacks a comprehensive and broad-picture evaluation of different policies. Most papers
nly analyze specific aspects of policies (e.g. the EU ETS carbon pricing system), specific regulations (e.g. renewable portfolio
equirements) or supply subsidies (e.g. feed in tariffs), in specific sectors (e.g. the automobile industry). This study extends the
iterature in several dimensions. We use a comprehensive classification of green patents covering all sectors of the economy of more
han twenty countries, analyze recent technological advances until 2016, and evaluate a full set of environmental policies – and
heir interaction effects – rather than isolated measures.

. Theory and channels for directing technological change

Economists have identified two market failures leading to the excessive emission of greenhouse gases and the sub-optimal level
f technical change towards green inventions. The first market failure is an environmental externality. Consumers and firms do
ot pay the full social cost of polluting the atmosphere, leading to overconsumption, similar to a ‘tragedy of the commons’-type
ituation. Moreover, since historically it has been cheap to use this resource, polluting technologies are better developed than
echnologies not causing environmental damage. Therefore, in the absence of policy intervention dirty technologies are favored
ver green technologies.

The second market failure is due to the public goods nature of knowledge (Geroski, 1995). If a company innovates, the created
nowledge may spill over to other, competing companies for free. That is, the investing company may not be able to appropriate the
eturns of its innovation and will therefore underinvest in new technologies. A fortiori, it will also underinvest in green technologies.6

As a first-best solution to the environmental market failure, economists advocate putting a price on emissions, leading households
and firms to internalize these externalities (Stiglitz, 2019). This can be achieved through carbon pricing, e.g. by an emission trading

6 Studies on the public-good-nature of knowledge are cited in Popp (2010), p. 5 f.
3
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system, or by direct taxation. Additional pros of market-based solutions are a lower need for information acquisition by the state
than with specific regulatory limits, and the continuous nature of pricing/taxation.7

The second market failure can be addressed through R&D subsidies or other R&D promoting policies such as patent protection or
state funding of basic research. Another argument in favor of R&D subsidies is to overcome the initial productivity disadvantage of
green relative to dirty technologies. As mentioned in the introduction, these first-best solutions are not implemented by the majority
of countries. Instead, most countries adopt environmental regulation to achieve their climate goals.

Which effects are to be expected from the policies mentioned above? It is useful to follow the schematic framework of Nordhaus
(1969) arguing that investments into the discovery of innovation rise with profits expected from successful discovery, i.e. there is
a monotonic relationship between innovative investments and the probability of successful discovery.8 Define 𝐼 as the total level
of investment in innovation, and 𝑝(𝐼) as the probability of a successful discovery, where 𝑝′(𝐼) > 0 and 𝑝′′(𝐼) < 0. Define 𝐺 as the
state of the world in which a discovery in green technologies occurs, and 𝐷 as the state in which no discovery occurs (i.e. the dirty
echnology prevails). E(𝜋|𝐺) is the innovator’s expected profit in case of green invention, and similarly for E(𝜋|𝐷) for retaining dirty
echnology. Green innovation investment will be undertaken if and only if E(𝜋|𝐺) > E(𝜋|𝐷). Firms may get subsidies so that they
o not have to bear the whole cost of innovation — define 𝜙(𝐼) ≤ 𝐼 as the firm’s private cost of investment. Finally, define 𝑟 as the
ost of capital. Then, the privately optimal level of innovation is given by the solution to:

max
𝐼

𝑝(𝐼) E(𝜋|𝐺) + (1 − 𝑝(𝐼)) E(𝜋|𝐷) − (1 + 𝑟) 𝜙(𝐼)

hus, policies can affect the decision to invest in green technologies via four channels. They can

1. increase the probability of successful innovation, 𝑝(𝐼),
2. increase the expected profits from green innovation, E(𝜋|𝐺),
3. decrease the expected profits from dirty technologies, E(𝜋|𝐷), and/or
4. reduce the private costs of investment, 𝜙(𝐼).

In the empirical analysis, we try to capture all four channels. Concerning channel (1), we expect the probability of successful
nnovation, 𝑝(𝐼), to be affected by the stock of knowledge amassed up to a specific point in time (Scotchmer, 1991). Channels (2)
nd (3) can be jointly examined by considering the expected profits from green innovation, relative to those from dirty innovation,
E(𝜋|𝐺)
E(𝜋|𝐷) . This ratio increases if the expected profits from dirty technologies, E(𝜋|𝐷), decrease e.g. due to carbon pricing.

Regulation could also affect both types of profits, since the implicit cost ratio between dirty and green inputs is altered. A green
ortfolio standard should increase expected profits from green innovation, a ban on oil heating should decrease the expected profits
rom dirty technologies. In theory, however, the effects of regulation on green innovation are ambiguous. If fossil fuel use and green
nergy are gross substitutes, regulatory restrictions on fossil fuel use (e.g. via outright prohibition or portfolio requirements for green
nergy) increase the marginal product of green energy and demand for complementary technologies. This increases the returns to
nnovating in technologies that augment green energy relative to returns to fossil fuel augmenting technologies. Regulation in this
ase directs innovation towards green innovation (Acemoglu et al., 2016). If fossil fuel use and green energy are less substitutable,
owever, the overall scale of production in the economy may fall, reducing demand for all capital goods that complement energy. In
his case, green regulation might reduce incentives for clean innovation (Gans, 2012). Which effect dominates can only be determined
mpirically.9 Finally, related to channel (4), policies can reduce the private costs of investment. Policies can reduce 𝜙(𝐼) directly
via direct subsidization or direct state R&D) or indirectly (via the tax system), thereby subsidizing green R&D. This would help
nternalize the public goods nature of the knowledge externality.10

Fig. 1 summarizes the policy channels potentially leading to green innovation and lists different types of environmental taxes,
&D subsidies and regulatory measures included in the empirical analysis. In the following sections we econometrically analyze the
ffects of the three main policy instruments.

7 On the negative side of taxation/pricing, Hepburn et al. (2020) enumerates four reasons why carbon pricing alone might not be sufficient. Carbon pricing
ay not achieve the task on the necessary timescale and the necessary scale of structural change. Moreover, regulation (e.g. a prohibition) may eliminate the

urning of fossil fuels altogether, eliminating all deaths associated with it, whereas taxation/pricing may not. Further, regulation may give (more) confidence
n new technologies such as solar, wind, or battery technologies characterized by large learning-by-doing effects and increasing returns to scale, than carbon
ricing. Another drawback may be the lower political acceptance of carbon pricing than of regulatory intervention.

8 The theory of Hicks (1963) stating that profit-motivated investment in innovation (R&D) is more attractive in sectors that can command higher relative
rices is closely related to Nordhaus (1969).

9 Moreover, the effects of regulation may depend on its specific implementation. For example, a limit on fleet emissions or a green portfolio standard may
nduce efforts by companies until the threshold is reached, but not beyond. Thus, effects could be non-linear, i.e. increasing innovation up to a point but then –
hen a specific target is achieved – tapering off. See Aghion et al. (2021) for recent evidence of a threshold effect of labor regulation on innovation for small
rench companies. Likewise, regulation punishes polluters but does not (directly) reward emission efficient actors. Thus, effects may depend on how exactly
egulation is implemented (e.g. NMB or MB). Environmental regulation, such as stipulating renewable energy quotas or subsidies for green technologies, may
lso have unintended consequences. For example, subsidies for renewables may reduce the electricity price via increased supply of electricity, leading to more
onsumption of energy. On the positive side, environmental regulations may convey a stronger signal to markets and firms that this policy is here to stay,
educing adoption uncertainty.
10 Some green policies may concern more than one channel. For example, a policy that guarantees some form of stable revenue for renewables, such as

ontracts for difference or guaranteed feed-in tariffs would not only concern channel (2) but also lower the cost of capital (due to a lower investment risk),
hereby impacting channel (4).
4
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Fig. 1. Policy channels for directed technological change.

4. Data

4.1. Green patents

The patent data are drawn from the European Patent Office PATSTAT global spring 2020 version, containing all worldwide
patents (including those granted by non-European patent authorities). Based on the Veefkind et al. (2012) classification, we select
all Y02 (‘‘green’’) patents in all available countries (see also Haščič and Migotto (2015)). Three different types of green patents are
included in our dataset: (i) zero emission, (ii) emission reducing technologies and (iii) negative emission technologies. These include
climate change mitigation technologies related to energy, transportation and buildings as well as capture, storage, sequestration or
disposal of greenhouse gases. Examples of zero emission technologies are patents for renewable energy generation. Emission reducing
technologies include those improving the fuel-efficiency of vehicles or the input/output efficiency of power plants. Finally, negative
emission technologies comprise, for example, carbon capture and storage through biological or chemical separation.

We assign green patents to countries based on the country of the patent owner. Thus, patents filed by Siemens AG are counted
towards German innovation, but patents filed by a Spanish subsidiary of Siemens are counted in Spain. The year of first filing is
used as the application date of the patent. In order to attribute patents to sectors, we follow the procedure developed by Dorner
and Harhoff (2018), who exploit a large dataset of linked inventor-employee data to create detailed and fine-grained concordance
tables of patent technology classes (4-digit International Patent Classification (IPC) class) and industry sectors (2-digit NACE codes).

Every green (according to the Y02 classification) patent is assigned to 2-digit industries based on its 4-digit IPC codes. As many
patents have multiple IPC codes and the link between technology and industry classes is 𝑛 ∶ 𝑚, we weigh each patent such that (i)
t is counted in all applicable industries and (ii) the overall weight of every green patent is one.

The procedure of assigning green patents to industries is illustrated in Fig. 2. For a given patent we collect all relevant IPC classes
step (2) in Fig. 2); use the Dorner and Harhoff (2018) mapping to identify the corresponding NACE2 codes and their weights (3);
nd adjust the weights (4) such that the sum of a patents’ weights across all industries is equal to one.

A limitation of this approach is that we need to assume that the concordance of technology classes and industry sectors,
hich Dorner and Harhoff (2018) created based on German patents and establishments, also holds in other countries. It seems
lausible that the relation of technology classes and industries is predominantly determined by technological considerations and
imitations – particularly since we are looking at ‘high-tech’ patents – rather than country specificities. Nonetheless, this extrapolation
ight induce a degree of measurement error to our outcome variable. While this could make estimation noisier, it should not –

ssuming that the measurement error is unsystematic – result in biased estimates.

.2. Environmental taxes

We use data from the Environmental taxes database from EuroStat. An environmentally related tax is defined as a tax on a
hysical unit of something that has a proven, specific negative impact on the environment. We collect data on environmentally
elated taxes for all European countries (including Iceland, Liechtenstein and Norway), unfortunately such data do not exist for
ther countries. Tax revenues are allocated to NACE2 sectors and available for the 1995–2018 period.

Additionally, all variables for environmentally related tax revenues are classified into energy, transport, pollution and resource
axes. Energy taxes include all taxes on energy production and cover tax revenues from emission trading systems, the mineral oil
ax and emission taxes of CO2 and SO2. Therefore revenues of emission permits are part of this category. Transport taxes include
5

axes on the ownership of motor vehicles, e.g. transport equipment and services. Pollution taxes are measured or estimated values of
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Fig. 2. Mapping of IPC classes into NACE2 sectors based on Dorner and Harhoff (2018).

emissions to water or air, management of solid waste and noise. Resource taxes include all taxes on the extraction or use of natural
resources (e.g. deforestation).

4.3. R&D subsidies and tax deductions

The International Energy Agency database for government funding of energy-related R&D includes all relevant research subsidies
in the field of energy. We can split those budgets in subgroups pertaining to R&D in nuclear, renewables, energy efficiency, hydrogen
and other R&D. Nuclear and hydrogen include R&D in nuclear and hydrogen technologies, respectively. Renewable subsidies include
public investments predominantly regarding solar, wind, and bio-fuels. Energy efficiency captures all activities which increase output
with less or equal energy input. Other R&D is the residual category and comprises, among other areas, investments in fossil fuel
research. Subsidies are allocated to countries and years.11

Data on R&D tax deductability are collected from the ‘Implied tax subsidy rates on R&D expenditures’ database from the OECD
and include all OECD and eleven non-member countries between 2000–2016. In the regressions, we use the tax subsidy rate (1
minus B-index, which is a measure of the required before-tax income to spend USD 1 on R&D). This measure captures the relative
support for private sector investment in R&D delivered through the tax system and is available at the country/year level.

4.4. Environmental regulation and stringency

We collect data on environmentally related, regulatory policies from the International Energy Agency and map around 6000
different regulations into NACE2 sectors and countries. To this end, we exploit three classifications, which are available in the IEA
database: policy types, sectors and technologies.

Based on a regulation’s policy type, we classify policies as either market based (MB, 41% of all regulations) or non-market-
based (NMB, 35% of all regulations).12 NMB regulations are characterized by specific state-imposed targets, limits or performance
standards, which must be reached by producers or consumers within a certain time period. MB regulations are characterized by
using market-based mechanisms to reduce CO2 emissions.

We record only regulations which are currently in effect in a given country, industry and year. Thus, if a regulation expires,
the associated dummy switches back to zero. Similar to our approach of mapping patents to industries, the ‘sectors’ (e.g. transport)
and ‘technologies’ (e.g. passenger vehicles) field of a regulation allow us to assign regulation to industry sectors. In around 75% of
cases, the sectors could be directly mapped to the corresponding NACE2 industries, while in around 20% of cases we used our best
judgment to find the most appropriate NACE2. Around 5% of policies could not be reliably allocated and were dropped from the
data. This procedure enables us to identify the prevalence of each policy type within clusters of country, sector and year.

However, while this approach allows us to infer the existence of environmental regulation at a fine-grained level, it does not
take into account how strict this regulation is. For example, we would not expect a non-binding standard to affect innovation (or

11 We also experimented with the OECD’s GBARD dataset, containing governmental R&D expenditures at the country/year level. The GBARD data are
ore comprehensive in the sense that they are not limited to energy-related R&D subsidies. However, the GBARD data contain only rather broad categories

e.g. university-funded research) and do not allow for a split into green-tech categories. While we also find positive effects with the GBARD data, we opted to
se the IEA’s database as it contains more interesting sub-categories.
12 We drop regulations that cannot be reliably and exclusively assigned to either group, e.g. by having features of both. In a previous draft we included these
6

hybrid’ regulations finding mostly insignificant effects on green innovation.
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other outcomes) in an industry. Thus, in order to account for the intensity of regulation, we need a measure of the stringency of
environmental regulation (Brunel and Levinson, 2020).

The Environmental Policy Stringency index (Kruse et al., 2022) is provided by the OECD and measures the stringency of
nvironmental policies across countries and years. The index is based on a selection of environmental policy instruments related to
limate and air pollution, and is aggregated into composite indexes for 29 countries from 1990 to 2020. The EPS is provided as an
conomy wide measure of policy stringency and can be subdivided into MB and NMB instrument stringency (Fabrizi et al., 2018).

In the regressions, we interact the indicator variables for environmental regulation (overall, market based and non-market based)
ith the corresponding EPS indexes. We thus do not separately identify the impact of the quality (stringency) and quantity (count) of

ectoral regulations, but rather derive a compound measure comprising both elements. This seems reasonable, as effective regulation
eeds to be both in place and binding in order to affect green patenting.

Thus, in sum, we measure the stringency of regulation either overall or differentiating MB and NMB regulations which is
mportant from a policy standpoint. Additionally, this approach achieves better comparability of regulation across countries and
ields variation at the country, industry and year level which is crucial to identify coefficients.

.5. Control variables

Control variables include a CO2 emission index (sourced from the OECD), gas prices, the knowledge stock and value-added
t the industry level. We use natural gas prices from the IEA energy prices and tax statistics database. In the regressions we use
wo-year lags due to temporal lags between price changes and patent applications. Natural gas prices are based on average prices
or industry and/or households. As fuel prices increase the cost of using carbon technologies, they are expected to increase green
atent applications. To control for the knowledge stock within a given country and sector, we apply the perpetual inventory method
ith starting year 1995:

𝐾𝑆𝑐𝑠𝑡 = 𝑃𝑐𝑠𝑡 + (1 − 𝛿) ∗ 𝐾𝑆𝑐𝑠𝑡−1 (1)

where 𝐾𝑆𝑐𝑠𝑡 and 𝑃𝑐𝑠𝑡 denote the knowledge stock of patents and the flow of new patent applications in country 𝑐, sector 𝑠 and year
𝑡. We discount patents with a rate of 𝛿 = .20 by year as in Aghion et al. (2016).

Sectoral value-added is sourced from Eurostat and intended to control for size effects at the country/sector/year level. As, for
example, environmental tax revenues scale with the economic activity in a sector, it is important to control for the tax base in order
to distinguish size effects from policy effectiveness.

4.6. Summary statistics

Table 2 presents descriptive statistics on the main variables, while detailed definitions are provided in Table 1. The share
of green over total patents is lower in the USA and Canada (6.9%) than in EU countries (8.6%). Environmental taxes on a
country/NACE2/year level are more than 120 mio. e on average, the bulk of which is comprised of energy taxes.13 While transport
taxes (nearly 15% of environmental tax revenues) are important, resource taxes are of lesser importance.

In 9.3% of European country/NACE2/year observations, there is at least one active regulation (12.4% in North America). The
average regulatory stringency, the interaction of a dummy for active regulation in an industry and the EPS index, is around 0.25
and quite similar in both regions.14 The most prevalent type of regulation is NMB.

The average R&D tax deduction rate is around 11% and very similar for Europe and North America. Countries spend around
e200 mio. yearly on green research subsidies in the average industry.15 Natural gas prices are twice as high in Europe as in North
America. The CO2 emission index is around 15% higher in North America than in Europe.

Fig. 3 provides time series plots on our main variables. The share of green patents increases strongly between 2000 and 2010
and starts to decrease after 2010/2011. Maybe surprisingly, only the regulatory stringency of active regulations displays a consistent
upward trend in the last two decades for both country groupings.16 R&D subsidies as a share of GDP show disparate developments
with a spike in both regions around 2010/2011 and a decline thereafter. Environmental taxes as a share of GDP display a decline
in Europe after 2005, and stagnate at around 1.3% of GDP after 2010.17 Thus, the summary statistics paint a somewhat sobering
picture of the evolution and state of climate change policies. While the prevalence and stringency of active regulations increased,
the GDP adjusted amount of environmental taxes and subsidies stagnated or declined over the last two decades.

13 The largest part of energy taxes, in turn, is comprised of the mineral oil tax.
14 The EPS index itself takes on values between zero (not binding regulation) and 6 (very stringent regulation). The average value of the index is 2.91.
15 The absolute number is much larger for North America, because of industry size effects. On a per-capita basis, however, subsidies are quite comparable
cross regions, with Europe subsidizing green research at around 12 e p.c. versus 14 e p.c. in the USA/Canada.
16 Separate plots of the occurrence of regulation and the EPS index reveal that regulatory stringency increased in both dimensions, the number of active

egulations and their stringency.
17 Unfortunately, we lack data on sectoral environmental taxes in the USA and Canada.
7
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Table 1
Variable description.

Variable Definition Source* Unit Level

Dependent variable

Y02 patents We use the PATSTAT global spring 2020 version from the European
Patent Office including worldwide patents. For the allocation of
patents to sectors, see Section 4.1.

EPO Weighted count 𝑐∕𝑠∕𝑡

Independent variables

Environmental taxes Environmental tax revenues separated by NACE2 code for each
country and year. We use all available observations until 2016 of
all European countries, incl. Iceland, Liechtenstein and Norway.
Environmental taxes are classified into three main categories:
Energy, Transport and Resource taxes.

EuroStat mio. e 𝑐∕𝑠∕𝑡

Environmental
regulations

Environmental regulations for each country, sector and year
worldwide. Using the IEA policy database and counting each
regulation by start and end date. In the regressions we first
compute a dummy if a given country, sector and year has a
market-based or non-market-based regulation.

IEA Weighted count 𝑐∕𝑠∕𝑡

Environmental
policy stringency
index

The Environmental Policy Stringency Index (EPS) is an international
comparable measure for each country. It measures an explicit or
implicit price on pollution or environmentally harmful behavior.

OECD
EPS data

Index 𝑐∕𝑡

We use sub-index groups for market-based instruments (taxes and
certificates, e.g. CO2 trading schemes, CO2 taxes, fuel taxes) and
non-market based instruments (performance standards, e.g. emission
limit values) based on Kruse et al. (2022). The EPS is defined
between zero and six.

R&D subsidies The IEA database for government funding of energy R&D includes
all relevant funding in the field of energy across multiple countries
and years. Separated in Nuclear, Renewables, Energy Efficiency &
oth., Hydrogen, and others.

IEA mio. e 𝑐∕𝑡

R&D tax deductions This variable is defined as a tax subsidy rate. The tax subsidy rate
is calculated as 1 minus B-index, which is a measure of needed
before-tax income to break even on USD 1 of R&D outlays.

OECD % 𝑐∕𝑡

Control variables

CO2 emissions CO2 fuel combustion emissions expressed as an index, where the
reference year 1990 is set to 100.

OECD % 𝑐∕𝑡

Natural gas price Natural gas prices exclusive taxes. IEA $/MWh 𝑐∕𝑡

Knowledge stock Discounted sum of all patents (base 1995) with a yearly
depreciation rate 𝛿 of .20 (perpetual inventory method).

EPO Count 𝑐∕𝑠∕𝑡

Value added Gross Value Added is defined as output value at basic prices less
intermediate consumption valued at purchasers’ prices.

Eurostat mio. e 𝑐∕𝑠∕𝑡

Notes: c: country; s: sector; t: year; Source: IEA policy database https://iea.org/policies; Environmental tax database: https://appsso.eurostat.ec.europa.eu-
/nui/show.do?dataset=env_ac_taxind2&lang=en; Environmental policy stringency index: https://www.oecd-ilibrary.org/environment/data/oecd-environment-
statistics/environmental-policy-stringency-index_2bc0bb80-en. Value added: https://ec.europa.eu/eurostat/databrowser/view/teina400_r2/default/table?lang=en.

5. Empirical strategy

We estimate the impact of environmental policies on green innovation in a panel dataset at the country/sector/year level of
bservation using the following estimation equation:

𝑙𝑛(𝑌 02)𝑐𝑠𝑡 = 𝛼𝑠𝑡 + 𝜏𝑙𝑛(𝑇 𝑎𝑥𝑐𝑠𝑡) + 𝜌𝑅𝑒𝑔𝑐𝑠𝑡 + 𝜎𝑙𝑛(𝑆𝑢𝑏𝑐𝑡) + 𝛾𝐗𝑐𝑡 + 𝜀𝑐𝑠𝑡. (2)

The dependent variable is the natural logarithm of the weighted count of Y02 patents, allocated to country 𝑐 and NACE2 𝑠,
in year 𝑡. All regressions include fixed-effects at the sector/year level (𝛼𝑠𝑡). Thus, sectoral trends and shocks in patenting across
countries are accounted for.

The main variables of interest on the right hand side are (i) the log of environmental tax revenues (𝑙𝑛(𝑇 𝑎𝑥𝑐𝑠𝑡)), in total as well
s classified into three subcategories (energy taxes including pollution taxes, resource taxes and transport taxes); (ii) the presence
nd stringency of environmental regulation in a sector, country and year (𝑅𝑒𝑔𝑐𝑠𝑡), overall or distinguishing MB and NMB regulation;
nd (iii) R&D subsidies (𝑆𝑢𝑏𝑐𝑡), which we capture on the one hand by the log of state-level R&D budgets devoted to green energy
nnovation (direct subsidies), in total as well as classified into nuclear, renewables, and energy efficiency & others, hydrogen and
ther R&D; and on the other hand by the R&D tax subsidy rate (indirect subsidies), i.e. the share of R&D costs companies can recoup
hrough the tax system.

Additional control variables are collected in 𝐗𝑐𝑡; it includes a CO2 emission index, the log of the two year lagged price of natural
as, and the log of the knowledge stock (which varies at the country/sector/year level). In all regressions we also control for the log
8
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Table 2
Descriptive statistics.

EU North America

Mean SD Obs. Mean SD Obs.

1. Patents
Number of Y02 patents Count 18.622 94.207 18,673 133.167 447.493 3439
Number of total patents Count 208.178 928.729 18,673 1,976.905 6,396.542 3439
Share of Y02 patents Share 0.086 0.032 18,673 0.069 0.015 3439

2. Environmental related taxes
Total environmental taxes mio. e 121.155 310.313 18,673 n.a. n.a. 0

Energy taxes mio. e 101.361 274.168 18,594 n.a. n.a. 0
Resource taxes mio. e 2.396 27.292 18,599 n.a. n.a. 0
Transport taxes mio. e 17.874 64.157 18,614 n.a. n.a. 0

3. Environmental regulations
Sectoral regulation Count 0.523 2.403 18,673 2.310 11.119 3439
Total NACE2 reg. Share 0.093 0.290 18,673 0.124 0.330 3439
Regulatory stringency Index 0.269 0.872 18,673 0.251 0.734 3439

Market-based str. Index 0.118 0.478 18,673 0.059 0.192 3439
Non-market-based str. Index 0.378 1.326 18,673 0.426 1.310 3439

4. R&D subsidies
R&D tax deductions Rate 11.179 13.385 18,673 11.156 12.000 3439
Total budget R&D mio. e 202.679 283.231 18,673 2,419.547 2,274.549 3439

Nuclear mio. e 52.861 133.483 18,673 374.377 318.908 3439
Renewables mio. e 48.670 59.529 18,673 352.107 460.012 3439
Energy eff. & oth. R&D mio. e 64.655 70.612 18,673 559.063 591.178 3439
Hydrogen mio. e 6.858 11.617 18,673 83.766 117.296 3439
Other R&D mio. e 29.477 45.182 18,673 1,050.235 984.059 3439

Control variables
Natural gas price $/MWh 37.394 13.764 18,673 16.041 6.390 3439
Knowledge stock Count 1103.545 5,001.576 18,673 10 305.751 33 141.014 3439
CO2 emission Index 96.715 21.234 18,673 117.896 7.139 3439
Value added mio. e 8372.213 15 343.838 14,692 n.a. n.a. 0

Notes: Data are reported at the country/sector/year level; no tax and value added data are available for US and CA (North America). Countries included in EU:
AT, BE, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, NL, PL, PT, SE.

value added of an industry, proxying for industry size. Thus our regressions measure the effects of e.g. taxes and subsidies relative
to economic activity in the industry and an increase in taxes or subsidies therefore indicates a rise in the stringency of policy. 𝜀𝑐𝑠𝑡
is a heteroskedasticity-robust error term, allowing for error correlation within the 86 NACE2 clusters contained in the data.18

The identification of the causal impact of environmental policies on green innovation relies on two pillars. On the one hand we
rely on panel econometrics, using a comprehensive set of fixed effects and control variables. The fixed-effects at the sector/year level
account for differential exogenous (green) technological trajectories across sectors and over time, while the country/sector/year-
specific knowledge stock controls for the level of innovative activity. Thereby, these variables make innovative sectors more
comparable to low-tech sectors. Additionally, the inclusion of value added makes large and small industries more comparable.
We hope to capture other factors driving green innovation through the set of control variables described above (e.g. gas prices and
emissions).

On the other hand, we employ an IV strategy, instrumenting environmental taxes, direct R&D subsidies and regulatory stringency,
since these policies are likely to be endogenously determined in the political decision making process and not randomly assigned.19

There might be many reasons for endogenously determined environmental policies. For example, if the economy is strong it may
be easier for politicians to pass new regulations, finance new subsidies or even impose a carbon tax. Conversely, it may be tough to
pass legislation if the economy is not doing well.20 Thus, the timing of new environmental taxes, regulations, and R&D subsidies is
not random and could bias the estimated coefficients. We therefore need to find instruments which (1) affect environmental taxes,
regulations, and R&D subsidies (i.e. are not weak instruments) and (2) do not directly affect green patenting activity in an industry
but only indirectly via the applied policies (i.e. the exclusion restriction should be fulfilled).

18 We do not estimate count models (e.g. Poisson or negative binomial), because our unit of observation is an industry in a country in a year and we log
he sum of weighted green patents at this level. Thus, the dependent variable is neither a count, nor does it suffer from zero inflation. However, the data are
eteroskedastic, right-skewed, and have a variance that increases with the mean. We tackle these problems by taking logs, introducing a comprehensive set of
ixed effects as well as heteroskedasticity-robust, clustered error terms.
19 We do not instrument for indirect R&D subsidies (the R&D tax subsidy rate), since they apply to all R&D and can arguably be viewed as exogenous to
reen patenting activity. Empirically, R&D tax subsidy rates are very stable, in some countries they have not changed for decades. More importantly, they apply
o all sorts of R&D activity (not only environmental R&D) and do not react much to the current political debate on climate change.
20 As an example, see the (eventual) passage of the Inflation Reduction Act in the US in 2022 containing predominantly subsidies and regulations to combat

limate change.
9



Journal of Environmental Economics and Management 124 (2024) 102916K. Gugler et al.
Fig. 3. Main variables over time. Notes: (1) Share of Y02 patents over total patents by region and year; (2) Environmental taxes over GDP in Europe, no data
available for US and Canada; (3) Total R&D budget over GDP by region; (4) Environmental regulation stringency by region (see Section 4.4).

We propose that this is achieved by the use of Hausman-style instruments, where the state of environmental policy in a country,
sector and year is instrumented via the policies in the same sector and year in other countries (excluding the focal one). Specifically,
to instrument for an environmental policy in country 𝑐 and sector 𝑖 (we measure policy trends at the one-digit NACE level) and year
𝑡, we calculate the average taxes/regulations/subsidies in sector 𝑖 and year 𝑡 in other countries, −𝑐. To abstract from size effects
and ensure comparability across countries, we construct the instruments for taxes and subsidies on a log per-capita basis. While
our instruments are generally calculated using all other available countries, our main results (Table 3) excludes North American
countries, as environmental tax data are not available. Thus, the instruments for European countries are calculated from other
European countries.

Overall, we instrument sectoral policies using general trends in these sectors in other countries. As our main concern for
endogeneity are within-country specificities – such as e.g. the election of a government that is particularly for or against certain
policies –, an approach using general, sectoral trends in other jurisdictions seems appropriate to eliminate any feedback between a
countries’ political situation and its environmental policies.
10
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6. Results

6.1. Main results

This section presents our main results on how environmental policies impact green patenting. Table 3 contains the estimation
esults for Eq. (2). Column (1) presents the results for the main categories of environmental taxes, regulatory stringency and R&D
ubsidies in an OLS specification (i.e. disregarding the potential endogeneity of policies), while the other columns use the IV approach
escribed above. Column (3) distinguishes between different types of environmental taxes, while column (4) also looks at the sub-
ategories of regulatory stringency. Column (5) additionally distinguishes sub-categories of R&D subsidies. The first-stage regressions
three of which are reported in Table A.1 in the Appendix, while the rest is omitted for brevity) for columns (2)–(5) show that the
V approach works as desired: the endogenous policies are significantly related to the Hausman-instruments and the corresponding
-values indicate that instruments are not weak. Tests for underidentification and weak identification conducted on the first stage

egressions strongly reject the null hypothesis.
Before we turn to the main results, a few words about the coefficients on control variables are in order. As in Aghion et al. (2016),

he lagged price of natural gas positively affects green patenting. The log stock of knowledge in an industry obtains coefficients of
round 0.8-0.9, indicating a strong effect of the overall patent stock on green patenting (Scotchmer, 1991; Aghion et al., 2016). While
he overall CO2 emission index has a negative effect on green patenting, the coefficients of (log) value added remain insignificant.

It is interesting to compare the results obtained from OLS estimation with those from an IV approach (columns (1) and (2)):
hile the coefficients of tax breaks and most control variables are nearly identical, those of taxes, subsidies and regulation change

ubstantially when instrumenting. Thus there is evidence that some policies are indeed endogenous. With an IV approach, envi-
onmental taxes significantly direct innovation towards green patenting. The coefficient indicates that doubling the environmental
axes in an industry on average increases green patenting activity by around 6.7%. Column (3) reveals that energy and resource
axes, as well as – to a lesser extent – transport taxes, are responsible for the positive effect.

Environmental regulatory stringency also has the potential to direct technological change towards green. Doubling the strictness
f regulation in an industry is associated with a 16.4% increase in green patenting. Columns (4) and (5) convey that market based
egulations are (predominantly) responsible for this significantly positive effect.

State subsidization of R&D in green technologies – both direct R&D subsidies and indirect tax benefits – significantly increases the
umber of green patents. Doubling direct state R&D subsidies leads to a 9% increase in green patent applications. From column (4)
t is apparent that subsidies for renewable energy technologies are the main drivers of this effect. The coefficients of R&D subsidies
or energy efficiency and other R&D are significantly negative. This likely indicates substitution effects between green technologies
nd fossil fuels. Reducing R&D costs for companies indirectly via more generous tax deductions of R&D costs also increases green
atenting. An increase of the R&D subsidy rate by 1 percentage point increases green patent applications by 0.3%.

.2. Geography and time

Table 4 differentiates effects by geographic region as well as by time period. Specifically, we compare policies in North America
comprising the US and Canada) with the EU (see Table 2 for a list of included countries) and also policy effects up to and after 2010.
ince we lack data on environmental taxes in North America, we focus on regulation and R&D subsidies in the regional regression.

The impact of environmental regulatory stringency is strong and homogeneous across regions. European Union countries and
SA/Canada display rather similar coefficients. The effects of direct R&D subsidies are positive as well across country subgroups
ith comparable coefficients. Indirect R&D subsidies remain insignificant in North America, while exhibiting a negative effect in

he EU. Thus, there appear to be no strong heterogeneities across regions and no substantial differences to the main results, with
he exceptions of R&D tax breaks being insignificant or negative in this specification.

When evaluating the impact of environmental policies in different time periods, we generally find larger effects in the post-2010
eriod: while regulatory stringency has no significant effect before 2010, it significantly directs innovation after. The impact of R&D
ubsidies and tax breaks is positively significant in both periods, but substantially increases in size after 2010. Only the coefficient
n environmental taxes decreases, but remains significant.

Thus while heterogeneity across regions appears to be limited, we find that environmental policies have had a more substantial
mpact in recent years.

.3. Policy interaction effects

Most countries use more than one policy to tackle environmental problems. For example, the use of combustible fuels is subject
o taxation as well as regulation in many countries. Other examples include the EU ETS pricing emissions from electricity generation
nd emission standards for coal or gas plants or portfolio standards for renewables. In this section we try to answer a question that
s of first-order policy relevance: how do different environmental policy instruments interact, when used in conjunction?

Table 5 presents results when including a full set of interaction terms between the three policy types. We consider all policies
except R&D tax deductions) to be potentially endogenous and construct instruments for interactions analogously to the main
olicies. Table 5 reports the F-values of underidentification tests, but omits first-stage regressions (all of which have F-values of
ore than 100).
11
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Table 3
Effects of environmental policy instruments on green innovation.

(1) (2) (3) (4) (5)
OLS IV IV IV IV

1. Taxes
Env. taxes 0.011∗∗∗ 0.067∗∗∗

(0.004) (0.007)
Energy taxes 0.040∗∗∗ 0.040∗∗∗ 0.021∗∗∗

(0.008) (0.008) (0.008)
Resource taxes 0.020∗∗∗ 0.022∗∗∗ 0.015∗∗∗

(0.002) (0.002) (0.002)
Transport taxes 0.005∗ 0.005 0.013∗∗∗

(0.003) (0.003) (0.003)
2. Regulation
Regulatory stringency 0.045∗∗∗ 0.164∗∗∗ 0.174∗∗∗

(0.008) (0.031) (0.032)
Non-market-based 0.039∗∗ 0.027

(0.018) (0.018)
Market-based 0.215∗∗∗ 0.146∗∗∗

(0.028) (0.022)
3. R&D
Total budget 0.140∗∗∗ 0.090∗∗∗ 0.072∗∗∗ 0.071∗∗∗

(0.007) (0.008) (0.008) (0.008)
Nuclear 0.033∗∗∗

(0.004)
Renewables 0.280∗∗∗

(0.009)
Energy eff. & oth. −0.072∗∗∗

(0.007)
Hydrogen 0.004

(0.003)
Other R&D −0.044∗∗∗

(0.006)
R&D tax deductions 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Control variables
Gas price 0.221∗∗∗ 0.280∗∗∗ 0.293∗∗∗ 0.293∗∗∗ 0.203∗∗∗

(0.027) (0.028) (0.028) (0.028) (0.029)
Knowledge stock 0.881∗∗∗ 0.889∗∗∗ 0.917∗∗∗ 0.918∗∗∗ 0.768∗∗∗

(0.009) (0.011) (0.011) (0.011) (0.012)
CO2 emission index −0.002∗∗∗ −0.002∗∗∗ −0.003∗∗∗ −0.002∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Value added 0.012 −0.013∗ −0.011 −0.011 −0.011

(0.007) (0.008) (0.008) (0.008) (0.007)

Observations 20 883 20 883 20 783 20 783 20 448
𝑅2 0.95 0.81 0.81 0.81 0.82
Kleibergen–Paap LM 74.56 76.86 86.40 88.07

Notes: NACE2-clustered standard errors in parentheses, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The dependent variable is the log of Y02 patents allocated to a
ountry/industry/year cluster, all tax and R&D subsidy variables are logged as well. All regressions include fixed-effects at the NACE2/year level (1720 regressors)
nd contain observations on 86 NACE2 sectors across 22 countries.

There is a clear tendency of substitutive effects to dominate if policies are applied in conjunction. The largest substitutive effects
re obtained for the regulation and R&D subsidy interaction term. Thus, the marginal effects of R&D subsidies diminish significantly
f there is also regulation in place tackling the same problem (and vice versa). While the interaction effect of taxation and R&D
ubsidies is significantly negative, its magnitude in absolute terms is much lower than the interaction between regulation and R&D
ubsidies. Thus, it appears that carbon taxes/pricing entails less crowding out than regulation with respect to the effects of R&D
ubsidies.

One would expect substitutive effects if there are increasing costs of abatement and/or diminishing returns to innovation. For
xample, if carbon emissions are reduced in the automobile sector via fleet regulations, the marginal effect of an R&D subsidy is
ower since additional reductions in emissions via innovation are harder to achieve.

.4. A comparison of policies

The question of the cost-effectiveness of different measures is of prime interest. Unfortunately, we are unable to directly calculate
nd compare the economic costs associated with individual policies. While R&D subsidies and environmental tax revenues per
nduced patent may give an impression on how large program costs per induced patent are, these are not the economic costs
ssociated with these policies. For example, R&D subsidies must be financed by tax revenues and environmental taxes may be
12
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Table 4
Effects of policy instruments on green innovation by region.

By region By period

Region
North Am. × Regulatory stringency 0.246∗∗ (0.117)
North Am. × Total budget 0.084∗∗∗ (0.014)
North Am. × R&D tax deductions 0.001 (0.001)
EU × Regulatory stringency 0.219∗∗ (0.086)
EU × Total budget 0.096∗∗∗ (0.011)
EU × R&D tax deductions −0.003∗∗∗ (0.001)
Period
pre-2010 × Regulatory stringency −0.062 (0.064)
pre-2010 × Total budget 0.068∗∗∗ (0.011)
pre-2010 × Env. taxes 0.080∗∗∗ (0.014)
pre-2010 × R&D tax deductions 0.002∗∗∗ (0.001)
post-2010 × Regulatory stringency 0.278∗∗ (0.107)
post-2010 × Total budget 0.115∗∗∗ (0.018)
post-2010 × Env. taxes 0.034∗∗ (0.016)
post-2010 × R&D tax deductions 0.003∗∗∗ (0.001)
Control variables
Gas price 0.144∗∗∗ (0.017) 0.277∗∗∗ (0.033)
Knowledge stock 0.924∗∗∗ (0.013) 0.897∗∗∗ (0.019)
CO2 emission index 0.005∗∗∗ (0.000) −0.002∗∗∗ (0.000)
Value added 0.014 (0.012) −0.011 (0.015)

Observations 22 112 20 883
𝑅2 0.88 0.81
Kleibergen–Paap LM 7.16 6.60

Notes: NACE2-clustered standard errors in parentheses, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The dependent variable is the log of
Y02 patents allocated to a country/industry/year cluster, all tax and R&D subsidy variables are logged as well. All regressions
include fixed-effects at the NACE2/year level (1720 regressors) and contain observations on 86 NACE2 sectors across 22 countries.

Table 5
Interaction effects of policy instruments.

(1) (2) (3) (4) (5)

Env. taxes 0.067∗∗∗ 0.067∗∗∗ 0.230∗∗∗ 0.239∗∗∗ 0.245∗∗∗

(0.007) (0.007) (0.026) (0.027) (0.028)
Regulatory stringency 0.164∗∗∗ 0.536∗∗∗ 0.878∗∗∗ 0.888∗∗∗ 0.905∗∗∗

(0.031) (0.103) (0.127) (0.128) (0.130)
Total budget 0.090∗∗∗ 0.097∗∗∗ 0.161∗∗∗ 0.167∗∗∗ 0.121∗∗∗

(0.008) (0.008) (0.012) (0.013) (0.013)
R&D tax deductions 0.003∗∗∗ 0.003∗∗∗ 0.005∗∗∗ 0.007∗∗∗ −0.002

(0.000) (0.000) (0.000) (0.001) (0.001)
Regulation × Env. taxes −0.038∗∗∗ −0.039∗∗ −0.037∗ −0.034∗

(0.014) (0.019) (0.019) (0.020)
Regulation × R&D subsidy −0.214∗∗∗ −0.330∗∗∗ −0.337∗∗∗ −0.348∗∗∗

(0.053) (0.066) (0.067) (0.068)
Regulation × R&D tax deductions −0.002 −0.007∗∗∗ −0.007∗∗∗ −0.006∗∗∗

(0.001) (0.002) (0.002) (0.002)
Env. taxes × R&D subsidy −0.044∗∗∗ −0.045∗∗∗ −0.045∗∗∗

(0.006) (0.006) (0.006)
Env. taxes × R&D tax deductions −0.001∗∗ −0.001∗∗∗

(0.000) (0.000)
R&D subsidy × R&D tax deductions 0.002∗∗∗

(0.000)

Observations 20 883 20 883 20 883 20 883 20 883
𝑅2 0.81 0.81 0.80 0.79 0.79
Kleibergen–Paap LM 74.56 80.47 185.00 187.47 185.67

Notes: NACE2-clustered standard errors in parentheses, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The dependent variable is the log of Y02 patents allocated to a
ountry/industry/year cluster, all tax and R&D subsidy variables are logged as well. All regressions include fixed-effects at the NACE2/year level (1720 regressors)
nd contain observations on 86 NACE2 sectors across 22 countries.

assed on to consumers via higher prices, introducing deadweight losses we cannot measure. We therefore resort to estimating
tandardized (beta) coefficients, indicating by how many percent the outcome changes, when a regressor changes by one standard
eviation.21 This achieves comparability in the increment of the policy analyzed (one standard deviation) judging from the history

21 The beta coefficients are obtained by first standardizing all variables to have a mean of 0 and a standard deviation of 1. Thus, the coefficients then reflect
13

.d.-changes in the dependent variables for a one-s.d. change in the respective independent variable. These values are then multiplied with the in-sample standard
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Table 6
Beta coefficients in percentage.

Main Subgroup

Env regulations 0.145 0.072 (market-based)
Environmental taxes 0.179 0.054 (energy taxes)
R&D subsidies 0.137 0.444 (renewables)
R&D tax deductions 0.036 n.a.

of such variation. Thus, if it is comparably difficult (e.g. due to political economy constraints) or costly (direct and indirect costs
of a policy) to increase policy intensity by one historical standard deviation, we can compare the effectiveness in inducing green
patenting of the three policies.

Table 6 displays the results on standardized coefficients calculated from the estimates in Table 3. In addition to the main
ategories of environmental taxes, regulatory stringency and R&D subsidies, we display standardized coefficients for the respectively
ost effective sub-groups, energy taxes, market-based regulations and renewable subsidies, i.e. those with the largest positive
arginal effects in Table 3. The three main instruments display a fairly even influence on green patents. A one standard deviation

ncrease of environmental taxes, regulations and direct R&D subsidies increase green patents by between 14% and 18%.
This masks important heterogeneities across instruments. The single most important and effective instrument are R&D subsidies

or renewables with a standardized coefficient of 0.444: a one s.d. increase in renewable R&D subsidies increases green patents by
round 45%. Energy taxes and market based regulation follow next.

The theory channels discussed in Section 3 can help to rationalize these findings. As outlined, two market failures lead to the
xcessive emission of greenhouse gases and the sub-optimal level of technical change towards green inventions, the environmental
xternality and the public goods nature of knowledge. The most direct mechanism to internalize the second externality is through
&D subsidies or direct state funding of green research. Accordingly, we find that this mechanism is most effective in inducing
reen patents. While environmental taxes and regulation tackle predominantly the first externality, they can only indirectly rectify
he knowledge externality (via increasing the relative – explicit or implicit – prices of carbon on the market). Thus, while carbon
axes/pricing and regulation may be best suited to internalize the current environmental externality, R&D subsidies are most effective
n inventing new green technologies needed in the future to combat climate change.22

6.5. Robustness

We collect our robustness tests in Table 7. The four columns contain checks on (1) assigning patents by applicants, rather than
inventors; (2) only counting patents that were ultimately granted; (3) collapsing the data by industry and (4) collapsing the data
by country.

In column (1), we assign patents to countries based on the location of the applicant, rather than the location of the inventor.
The resulting coefficients and significances are very similar to those reported in Table 3.

Column (2) only counts patents that were ultimately granted for the dependent variable. Most policy-related coefficients
somewhat increase with this change in sampling strategy, but the direction and significance of the effects remain unchanged.

Finally, columns (3) and (4) contain more radical checks on our empirical approach, where we eliminate variation across
countries and industries respectively. In column (3), we average NACE2 sectors across all countries, such that we are left with
86 ‘average’ NACE2 groups and 1892 observations. In column (4), we calculate within-country means across all industries, leaving
us with 263 observations of 22 countries. To address these changes in sample variation and statistical power, columns (3) and (4):
(i) report OLS, rather than IV, coefficients23 and (ii) use contemporary gas prices, rather than second lags, to avoid further loss
of observations. All policy-related coefficients retain their positive sign and, in column (3), also their statistical significance. In
column (4), where we look at country-averages over time, taxes and subsidies become insignificant, likely due to the low number
of observations.

7. Conclusion

Although it is well-accepted among economists that the optimal policy to combat climate change is a combination of a
(sufficiently high and potentially increasing) carbon tax and R&D subsidies, we see few real world examples of such a first-best
approach. The reluctance to adopt such costly policies is likely owed to the dearth of empirical evidence on their effectiveness.

deviation of the dependent variable, log of green patents. Thus, the reported values indicate the expected % change in the outcome, for a one-s.d.-change in an
independent variable.

22 This is consistent with the model in Aghion et al. (2016) stating that R&D subsidies push scientists towards undertaking clean innovation. This is the direct
channel. A carbon tax reduces the market for the dirty input and increases the market for clean technologies. This indirectly also redirects innovation towards
clean technologies. Our results indicate that the direct channel is more important than the indirect channel.

23 In the aggregated estimation settings reported in columns (3) and (4) of Table 7, endogeneity concerns are less pertinent: while in the disaggregated main
sample a country might react endogenously to, e.g., a comparative sectoral advantage, such a targeted response is not possible when looking at country-level or
14

sector-level averages.
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Table 7
Robustness tests.

(1) (2) (3) (4)

1. Taxes
Env. taxes 0.062∗∗∗ 0.094∗∗∗ 0.084∗∗∗ 0.136

(0.007) (0.008) (0.030) (0.130)
2. Regulation
Regulatory stringency 0.131∗∗∗ 0.103∗∗∗ 0.169∗∗∗ 1.498∗∗∗

(0.029) (0.038) (0.028) (0.375)
3. R&D
Total budget 0.148∗∗∗ 0.161∗∗∗ 0.346∗∗∗ 0.025

(0.008) (0.009) (0.033) (0.034)
R&D tax deductions 0.001∗∗∗ 0.006∗∗∗ 0.018∗∗∗ 0.007∗∗

(0.000) (0.000) (0.002) (0.003)
Control variables
Gas price 0.642∗∗∗ 0.050 0.232∗∗∗ 0.233∗∗∗

(0.028) (0.035) (0.036) (0.075)
Knowledge stock 0.861∗∗∗ 0.815∗∗∗ 0.783∗∗∗ 0.365∗∗

(0.012) (0.014) (0.155) (0.162)
CO2 emission index −0.001∗∗∗ −0.005∗∗∗ 0.021∗∗∗ 0.003

(0.000) (0.000) (0.002) (0.003)
Value added −0.023∗∗∗ −0.021∗∗ −0.628∗∗∗ −0.811

(0.008) (0.009) (0.115) (0.521)

Observations 20 873 20 664 1892 263
𝑅2 0.79 0.76 0.99 0.97
Kleibergen–Paap LM 74.53 74.61

Notes: NACE2-clustered standard errors in parentheses (except column (4), where SEs are clustered at the country level), ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01. The dependent variable is the log of Y02 patents allocated to a country/industry/year cluster, all tax
and R&D subsidy variables are logged as well. All regressions include fixed-effects at the NACE2/year level (except columns (3)
and (4), which contain NACE2- and country-level FEs, respectively). Column (1) assigns patents by applicant; column (2) counts
only granted patents; columns (3) and (4) collapse the sample by industry and country, respectively (see text).

his paper aims to fill this gap by providing empirical estimates of the effectiveness of environmental policies to direct innovation
owards green technologies in a comprehensive dataset.

We construct a panel dataset, comprising detailed information on green patenting at the country/sector/year level of observation,
nd evaluate whether and how sectors react to three different environmental policies: carbon prices/taxes, environmental regulatory
tringency, and green R&D subsidies. Our main results are encouraging. All three policies direct innovation towards green patenting.
nvironmental taxes, environmental regulatory stringency and state subsidization of R&D of green technologies significantly increase
he number of Y02 patents in affected countries and sectors.

From the point of view of policy, the questions of interaction effects between different policies and cost-effectiveness are of
rime interest. Our results allow some guidance on both dimensions. Concerning policy interactions, we consistently find negative
ffects, i.e. there is a preponderance of substitutive effects among policies when applied in conjunction with each other. The largest
ubstitutive effects are obtained for the regulation times R&D subsidy interaction term. Thus, the marginal effects of R&D subsidies
iminish significantly if there is also regulation in place tackling the same problem (and vice versa). Contrariwise, it appears
hat carbon taxes/pricing entails less crowding out than regulation with respect to the effects of R&D subsidies. These results are
onsistent with increasing costs of abatement and/or diminishing returns to innovation.

To address cost-effectiveness, we estimate standardized coefficients. Consistent with theory, we find that the single most effective
olicy is direct R&D subsidies for renewables: a one-standard-deviation increase in direct R&D subsidies for renewables induces
he largest increases in green patents of around 45%. In comparison, both environmental taxes and environmental regulatory
tringency achieve lower increases. Thus, while carbon taxation and possibly regulation may be best suited to internalize the current
nvironmental externality, R&D subsidies can successfully help obtain the new green technologies needed in the future to combat
limate change.

Our main result is that all three policy instruments are effective in directing technological change towards green innovation.
hus, if for some reason, e.g. due to political feasibility, it is not possible to implement the first-best policy combination – carbon
axes/prices in conjunction with R&D subsidies – that is no excuse for environmental idleness: regulation (in conjunction with R&D
ubsidies), if stringently applied, also directs technological change towards green. Moreover, environmental policies do not only
ave short-run effects but can spark longer-run green innovation. Thus, the long-run cost–benefit balance of these policies is more
avorable than when only considering short-run costs and benefits. However, we were not yet able to compare the economic costs
f policies, nor calculate the economy wide, general equilibrium impact of the policies under consideration. While our results are
uggestive, future research should take further steps to identify which policies combat climate change at the lowest cost.
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Table A.1
First stage regressions for column (2) in Table 3.

Regulatory stringency Env. taxes R&D subsidies

Instrument regulation −21.268∗∗∗ −4.105∗∗∗ −2.885∗∗∗

(1.938) (0.987) (0.390)
Instrument tax −0.001 −7.964∗∗∗ −0.080∗∗∗

(0.020) (0.245) (0.028)
Instrument R&D budget 0.010 4.916∗∗∗ −12.590∗∗∗

(0.047) (0.167) (0.054)
R&D tax deductions 0.000 −0.004∗∗∗ 0.011∗∗∗

(0.000) (0.001) (0.000)
Gas price −0.000 −0.117∗∗ −0.136∗∗∗

(0.015) (0.050) (0.013)
Knowledge stock 0.003 0.605∗∗∗ 0.619∗∗∗

(0.003) (0.015) (0.005)
CO2 emission index −0.000 0.006∗∗∗ −0.006∗∗∗

(0.000) (0.000) (0.000)
Value added −0.005∗∗ 0.264∗∗∗ 0.126∗∗∗

(0.003) (0.019) (0.006)

Observations 20 883 20 883 20 883
F 53.23 458.81 21 727.28

Notes: Standard errors in parentheses, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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