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A B S T R A C T   

This study estimates that the introduction of a carbon tax in the British power sector in 2013 and its two sub
sequent elevations in 2014 and 2015 led to a substantial decline in electricity-related CO2 emissions by 26% (or 
38.6 MtCO2) within only three years. Identification of the causal effect relies on discontinuities in electricity 
generation induced by the policy changes and on a novel and detailed dataset of hourly emissions from all British 
fossil-fuel power stations. Notably, the carbon tax changed power plants' marginal costs according to their 
emission intensity, so that “dirty” coal was pushed out of the market, whereas “cleaner” gas filled a large share of 
the production gap. Our findings suggest that even a moderate carbon tax can induce significant abatement, 
supporting the notion that a market-based climate policy should be viewed as a viable policy option. We also 
discuss limitations of this national tax, such as that it likely created emissions abroad via imports and the 
waterbed effect within the EU Emission Trading System.   

1. Introduction 

Most economists tend to agree that putting a price on emissions, 
either in the form of a carbon tax or through tradeable emission permits, 
reduces carbon emissions most efficiently via market-based incentives 
(e.g. Borenstein, 2012; Böhringer et al., 2014; Newell and Pizer, 2008), 
and that the carbon price should be coordinated internationally (Nord
haus, 2018) to avoid carbon leakage. Yet, some scholars argue that there 
are severe political obstacles against high-enough carbon prices, as to 
induce significant abatement at an accelerated speed necessary to avoid 
the potentially disastrous consequences of global warming (e.g. Patt and 
Lilliestam, 2018; Rosenbloom et al., 2020). So far, the political imple
mentation of effective carbon pricing has been cumbersome, many 
emission trading schemes suffered from shortcomings in their infantile 
stages of implementation (Cason and Gangadharan, 2006), a globally 
coordinated carbon price has turned out illusive (Jo and Carattini, 

2021), and taxes are generally unpopular, which threatens the political 
feasibility of a meaningful carbon price. Emissions trading systems, such 
as in California, the Regional Greenhouse Gas Incentive (RGGI) in the 
Northeast of the US, or the EU Emissions Trading System (ETS), yielded 
low carbon prices (i.e. below central estimates of the social cost of 
carbon) most of the time (Larsen, 2018).1 

Consequently, many states try to achieve their emission reduction 
goals via (uncoordinated) national climate policies, often in the form of 
subsidies for renewable energies, yet generally fail to meet their climate 
goals.2 This may be one reason why many countries are currently dis
cussing national carbon taxes in their climate agendas, whereas only few 
have already introduced them. Unfortunately, resilient studies about the 
causal effect of carbon pricing on emissions are scarce, despite the need 
to rely on accurate measures and to foster public support for carbon 
pricing (Andersson, 2019). 

The goal of this study is thus to assess the causal effect of a carbon tax 
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1 Newberry et al. (2019) argue that the low EU ETS emissions price resulted from too many issued emission permits (likely in fear of carbon leakage and concerns 
about international competitiveness) and generous crediting of ETS permits from emissions-reducing activities in third party countries, but also from unilateral 
climate change strategies, such as the fast deployment of subsidized renewable energies.  

2 Gugler et al. (2021), for example, demonstrate that subsidizing renewable energies is less efficient in terms of both emissions abatement and costs relative to 
carbon pricing. 
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on emissions in a key emissions-contributing industry, the power sector, 
for the case of Britain. Britain introduced a national carbon tax, the 
“carbon price support” (CPS)3 for its power sector on top of the EU 
emission allowances (EUA) price in 2013, followed by two significant 
increments in the subsequent years. The main motivation for the CPS 
was a largely ineffectively low EUA price. The British case is relevant, 
because it is the first European country to implement a significantly high 
carbon tax for its power sector, whereas most EU member states mainly 
rely on a (so far) low EUA price as well as on national support payments 
for renewable energies, yet fail their climate targets. Moreover, while 
many countries discuss strategies to phase out from coal power by the 
means of prohibitions (such as Germany), Britain's coal share dropped 
from 39% in 2012 to a negligible share (0.2%) in 2019 (see Fig. 3), and 
total emissions fell by 64% (see Fig. 2). The suspicion is that the CPS, 
working in the fashion of a market-based policy, may have contributed 
significantly to these developments. 

Our study analyses the energy sector as the major source of carbon 
emissions, not only in Britain, before the carbon tax was introduced (i.e. 
40% in 2012; BEIS, 2013), but also at the global level (i.e. 29.3% in 
2014; EEA, 2016). Hence, assessing the effects of a carbon tax may be 
most relevant for this sector, as it bears the greatest emissions savings 
potential. The British case has demonstrated that emissions particularly 
from the power sector may be replaced in a relatively short period of 
only a few years, as long as idle gas plants can replace “dirty” coal plants 
(see Section 2 for details). In other sectors of the economy, such as 
transportation, carbon taxes may only lead to a moderate reduction in 
emissions, because of relatively inelastic reactions to changes in the 
transport fuel price.4 

The CPS hikes on April 1 of 2013, 2014, and 2015 changed the 
marginal costs of fossil-fueled power plants immediately and perma
nently. Our identification of the tax effects thus relies on a regression- 
discontinuity-in-time (RDiT) approach to estimate causal effects of the 
discontinuous carbon tax adjustments (“jumps”) on carbon emissions. 
We do this by using hourly data of all British fossil-fueled (coal and gas) 
power plants. The idea of RDiT is that we can estimate the causal effect 
of the carbon tax, as emissions (or electricity generation) of fossil-fueled 
power plants would have changed smoothly around the date of the 
policy change in the absence of treatment (Chen and Whalley, 2012). 
Hence, we assume that around the arbitrary threshold, treated and un
treated units (i.e. thermal power plants before and after the tax jump) 
are identical in their observable and unobservable characteristics, so 
that the introduction of the carbon tax represents a local randomized 
experiment. RDiT thus allows for disentangling the causal effect of the 
tax jump from other confounding effects, such as variations in electricity 
demand or infeed from renewable energies, which should have changed 
smoothly around the dates of the policy changes.5 We also adjust our 
estimates for a large set of seasonal fixed effects. Moreover, RDiT 

circumvents many problems of other regression designs, such as endo
geneity concerns or omitted control variables, obviates the need for 
finding suitable instruments, which are often not available, and places 
“minimal assumptions” on the identification strategy (Hahn et al., 2001, 
p. 207). Our reliance on RDiT also enables estimation of causal effects in 
the absence of a control group. This is relevant, because the CPS affects 
all British thermal power plants, so that there is no cross-sectional 
variation in the policy implementation. A proper control group of non- 
treated thermal power plants may thus only be found outside Britain, 
triggering problems of potentially unobserved confounding shocks (e.g. 
different business cycles in other countries, different and changing na
tional climate change policies, etc.). 

For our RDiT design essential, electricity cannot be stored at large 
scale, at least not yet at economically sensible costs, which may rule out 
any anticipation effects of the announcement of the carbon tax. Thus, 
despite knowing in advance that the CPS would be introduced, elec
tricity generators could not act in anticipation of the policy change to 
avoid its effects and produce electricity at the cheaper carbon prices 
before the CPS hikes and sell it at a later date. Storage facilities of 
electricity would have been necessary in amounts that simply do not 
exist. Another possibility is that power plants may reduce their elec
tricity production some days preceding a tax jump (e.g., because pro
duction adjustments for ramping and cycling may cause additional costs 
and take time).6 If this was indeed the case, our results would (some
what) understate the “true” effect. To rule out these and related con
cerns, we run robustness tests using “donut” regressions, in which we 
eliminate observations of up to one month before the tax jumps. The 
donut regressions support our main findings. Furthermore, since all CO2- 
emitting power plants are treated and were built long before the policy 
change, self-selection into or out of treatment is not an issue, either.7 

Regarding the choice of the bandwidth, we follow Davis (2008) who 
argues for a period of investigation of at least one year on either side of 
the event (using hourly data) to identify a causal effect: “Windows 
smaller than 2 years [i.e. one year before and one year after treatment] 
are not considered because it becomes difficult to credibly control for 
seasonal variation.” We thus take one year before and one year after 
each event8 to capture a whole business cycle as well as seasonal effects, 
while we control for possible confounding effects in electricity markets 
(e.g. by using local polynomials in time and other control variables, such 
as polynomials of demand, infeed of renewables, day-of-week as well as 
hour-of-the-day fixed effects9). Other applications of RDiT might also 
suffer from unobservable confounding effects, such as changes in 
emissions from other sectors (e.g. outside the electricity sector) around 
the date of the policy change. In contrast, our data on CO2 emissions are 
calculated precisely for British power plants, so that changes in 

3 Although the British Government introduced the carbon tax under the term 
“Carbon Price Floor”, it does not work in the fashion of a minimum price (i.e. if 
the EUA price falls below a threshold, the floor price becomes effective), but it 
is essentially a top-up tax (CCC, 2014).  

4 For example, Andersson (2019) finds that average annual CO2 emissions 
from transport declined by only 6.3% in reaction to a significant carbon tax in 
Sweden, which rose from US$ 30/tCO2 in 1991 to US$109/tCO2 in 2004. Lin 
and Li (2011) estimate the effects of carbon taxes and find merely a 1.7% 
reduction in CO2 emissions for Finland along with no statistically significant 
effects for Denmark, Sweden, Norway, and the Netherlands. However, the au
thors neither specify for which sectors of the economy the tax applies – we 
assume that it is foremost transportation – nor describe the precise magnitudes 
of the taxes. 

5 Although Figure 3 shows descriptively that renewables increased signifi
cantly since the introduction of the CPS in 2012, their production depends on 
weather circumstances, so that only other weather-independent generation 
technologies, which can adjust their electricity output, such as gas-fired power 
plants, could immediately fill the production gap from coal. 

6 Gugler et al. (2021) provide a list of inactive (officially shut down or inactive electricity pro

duction) British coal power plants. Most plants cease their coal-fueled production around 
the dates of the tax jumps, which is evidence that the CPS is responsible for 
their inactivity/exit (in contrast to other potentially confounding policies, such 
as the Large Combustion Plant Directive; see below for details).  

7 There were no entries of gas-fired power plants during our sample period.  
8 Choosing a sample window of one year before and after treatment is a 

rather narrow frame for analysis in environmental economics. Hausman and 
Rapson (2018) mention that many RDiT studies on topics in environmental 
economics tend to expand the event window to enhance the number of obser
vations (to increase the precision of the estimates) at the trade-off of increasing 
the likelihood for estimation bias due to potential unobserved confounding 
effects. The majority of the 14 RDiT studies cited in Hausman and Rapson 
(2018) indeed apply event windows of multiple years (i.e. “at least two years, 
and several use eight years or more”).  

9 Hausman and Rapson (2018) indeed mention that it is essential in RDiT 
applications to include day-of-week fixed effects by the means of an example 
from the electricity production, because a policy change on a particular day (e. 
g. Monday) may bring about discontinuous impacts on the potential outcome 
compared to other days (e.g. the weekend). 
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emissions from other industries cannot bias our estimates. 
We estimate that Britain's introduction of the carbon tax and its two 

subsequent increments reduced emissions from the power sector by 38.6 
MtCO2 within three years, which accords to a cumulative abatement of 
26.2% relative to pre-treatment emissions. While emissions from coal 
decreased dramatically by 43.6 MtCO2 (− 40.1%), emissions from gas 
increased moderately by 5.0 MtCO2 (20.6%), because gas plants filled a 
large part of the electricity production gap from coal. A battery of 
robustness test confirms these results. Moreover, since we use plant- 
specific data, we can show that old, and thus relatively inefficient, 
coal plants react most significantly to the carbon tax, which we explain 
by changes in the relative marginal costs of individual power plants. 
Similarly, we find that less efficient gas plants reduce their output, 
whereas most gas plants are relatively efficient and thus increase their 
output. 

Our findings contribute to the growing literature on the empirical 
effects of environmental policies in the electricity sector and enriches it 
by several important aspects. Recent studies looked at the questions of 
how renewable energies (e.g. Abrell et al., 2019, Cullen, 2013; Kaffine 
et al., 2013; Novan, 2015; Callaway et al., 2018) or natural gas prices 
(Lu et al., 2012; Linn et al., 2014; Knittel et al., 2015; Cullen and Mansur, 
2017; Holladay and LaRiviere, 2017) affect emissions. There are, how
ever, several topics that have not been analyzed so far. While Cullen 
(2013) provides counterfactual evidence on the price of CO2, the effects 
are simulated but not empirically estimated. Fell and Kaffine (2018) 
compare the effects of wind generation and natural gas prices on emis
sions reduction, and Cullen and Mansur (2017) draw conclusions from 
the effects of natural gas price variations to assess how a carbon price 
would have performed. We prefer to analyze carbon prices directly. In 
line with theory, Gugler et al. (2021) estimate that a carbon price is 
significantly more cost effective than the direct subsidization of 
renewable energies. While their assessment is on how different carbon 
prices abate emissions, our study estimates the causal effect of the 
British carbon tax, which applies on top of the EU ETS price, in order to 
draw inference about the potential success of such a unilateral policy. 

More importantly, issues of identification have not yet been solved 
satisfactorily by the extant literature, probably in part because suitable 
instruments for carbon prices are not readily available. Carbon pricing at 
the EU level underwent many policy interventions, which cannot be 
viewed as truly exogenous with respect to the general state of the 
economies and therefore to electricity generation. For example, during 
and after the great economic crisis of 2008 and thereafter until 2017, too 
many emission certificates were issued, depressing the carbon price to 
an ineffectively low level. Our RDiT design of an exceptional policy 
change circumvents many identification issues. 

To our knowledge, two other academic studies, Abrell et al. (2022) 
and Leroutier (2022), investigate the effects of the British CPS, yet 
applying different methods. Abrell et al. (2022) construct a counter
factual by a machine learning approach and find that the CPS reduced 
emissions by 26 MtCO2 (or by 6.2%) during 2013–2016, which is 
significantly lower than our estimates (38.6 MtCO2 or 26.2%). Their 
estimations are only on the intensive-margin, estimating the short-term 
emissions reduction of plants that are active during the sample period, 
thus disregarding power stations which ceased production temporarily 
or permanently. Another possibility for the divergence in results may be 
the differences in the data employed and the method applied to 
construct a counterfactual via machine learning. In contrast, our study 
accounts for both production adjustments (i.e. the intensive margin 
impact) and production abolishments (i.e. the extensive margin impact) 
within our evaluation windows. Leroutier (2022) estimates in a 
difference-in-differences (DiD) framework an abatement of 143–191 
MtCO2 due to the CPS during 2013–2017, relative to a counterfactual 
constructed via a synthetic control group of other EU countries. This 
methods has the strength that it addresses both short-run effects (sub
stitution effects between existing power plants according to their 
emission intensity) and long-run effects (investments in greener 

electricity generation capacity), whereas a downside is that it may not 
precisely disentangle the effect of the CPS from confounding effects, 
such as changes in renewables, demand efficiency measures, other 
climate policies, or variation in economic activity in Britain relative to 
the control group after treatment, because DiD attributes any changes in 
the treatment group relative to the control group to the treatment. This 
may explain why Leroutier (2022) estimates a higher abatement effect 
(the author indeed acknowledges that her estimates may also include 
changes in confounding variables; c.f. Leroutier, 2022, p. 2). Our 
application of RDiT thus complements the aforementioned studies, 
because its strength is to precisely estimate a local treatment effect (i.e. a 
short-term substitution effect between “dirtier” and “cleaner” electricity 
generation technologies, which should nevertheless last as long as the 
marginal costs of existing plants are influenced by the new tax rate), 
whereas it cannot capture any longer-term investment effects. More
over, the British energy market regulator, Ofgem (2018), uses a simu
lation model to assess emissions reductions by selected electricity 
decarbonization policies during 2010–2017, qualitatively supporting 
our main findings. It concludes that carbon pricing, foremost since the 
introduction of the CPS, was the most important factor reducing emis
sions, followed by (large-scale) renewables subsidies, whereas air 
quality directives (e.g. the Large Combustion Plant Directive) and 
demand-side policies play only a minor role. Given the mixed findings 
on the effects of carbon pricing versus other policies, and of the British 
carbon tax in particular, our study may represent a valuable contribu
tion to the literature, relying on an established and sound methodology 
to analyze the causal effects of a carbon tax. 

The paper is organized as follows. Section 2 provides background 
information about Britain's carbon taxation of the power sector. Section 
3 discusses the empirical approach, theoretical predictions, issues of 
identification, and the data set. Section 4 presents the results of the 
empirical analysis. Section 5 provides robustness checks. Section 6 
concludes. 

2. Background 

Britain's emissions from the electricity sector have been regulated 
under the scope of the EU ETS since 2005. However, emission allow
ances were largely abundant during most of its existence, resulting in a 
low CO2 allowances price (see Fig. 1).10 On April 1, 2013, Britain 
introduced the CPS, on top of the EU ETS price, with the main justifi
cation that the EU ETS price was historically low on average, and even 
falling for over a year before its introduction. The CPS only applies for 
power plants (whereas the EU ETS also regulates many other industries), 
most likely because the energy sector was responsible for the majority of 
Britain's emissions before the policy reform was implemented (i.e. 40% 
in 2012; BEIS, 2013). 

While the EU ETS price hovered around €5/tCO2 before the intro
duction of the CPS, the CPS discontinuously topped up this price by 
£4.94 (€5.84) on 1 April 2013, followed by two further discontinuous 
elevations in the subsequent two years (i.e. by £9.55 (€11.46) on 1 April 
2014 and by £18.08 (€24.63) on 1 April 2015).11 Given that operators of 
thermal power plants had to pay a discontinuously higher carbon price 
from 1 April, 00:00 h on, following the respective CPS jumps, than they 
had to pay until 31 March, 24:00 h, we can use this for identification via 
our RDiT approach. 

10 Several adjustments of the EU ETS have been made. For example, during the 
recent phase 2013–2020, the EU allowances cap has been reduced by 1.74% 
each year and “a progressive shift towards auctioning of allowances in place of 
cost-free allocation” was introduced (EC, 2016, p. 2).  
11 The CPS was due to rise further every year until 2020 to a price of £30/ 

tCO2. However, a rising EU ETS price and in fear of a loss of international 
competitiveness, the UK Government decided to freeze the CPS at its 2015 level 
of £18/tCO2 until 2020 (House of Commons, 2018). 
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Fig. 2 shows that historical emissions from the British power sector 
increased from 159 MtCO2 in 2000 to a peak of 182 MtCO2 in 2006, 
followed by a decline, which was most pronounced during the years 
2009–2011, and in 2012, the emissions level almost reached that of 
2000 again. Many factors can be held responsible for the observed 
variation in emissions, such as changes in renewable energies, demand 
efficiency measures, and economic activity. Since the installment of the 
CPS in 2013, however, we see that total emissions fell at an unprece
dented rate to 57 MtCO2 in 2019, with a severe decline in coal-based 
emissions, and a moderate increase in gas-based emissions. Within 
only five years following the introduction of the CPS, Britain's emissions 
were cut by more than half, with the suspicion that the CPS may. 

have contributed significantly to this development. Hence, despite a 
downward trend in emissions since 2007, this is descriptive evidence 
that emissions may not have fallen as strongly without the CPS in place. 
Appendix Fig. A1 shows the daily sample emissions and further supports 
our notion that the CPS may be responsible for significant emissions 
abatement, because emissions abruptly fell after the respective tax 
jumps. 

From Fig. 3 we can see that Britain's coal share stayed fairly constant 
until 2012, but then dropped considerably from 39% in 2012 to a 
negligible share (2.4%) in 2019. This is another hint that the CPS may 
have changed electricity generation significantly. In parallel, other 
electricity generation technologies with significantly lower emissions, 
such as natural gas, and carbon-free technologies, such as renewable 
energies, significantly increased their production as to fill the produc
tion gap. We can also see that electricity demand fell modestly (during 
our sample from 88 TWh in 2012 to 84 TWh in 2016), imports increased 
marginally12 (from 3 TWh in 2012 to 4 TWh in 2016), and the share of 

nuclear electricity remained fairly constant since the implementation of 
the CPS in 2013. 

To sum up, while many factors may be held responsible for a decline 
in emissions, such as the growth of renewable energies, the modest fall 
in electricity demand, and the Large Combustion Plant Directive (LCPD), 
our suspicion is that the CPS has contributed significantly to the sharp 
decline in emissions since 2012. Thus, an essential element of our 
identification strategy is to trace out the discontinuous effects of the CPS 
from the rather smoothly changing effects of the LCPD, feed-in of re
newables, electricity demand, and other potential confounders. 

3. Empirical approach 

3.1. Identification 

In the RDiT approach, identification of the causal effect of the CPS 
stems from the discontinuous change in generation and therefore CO2 
emissions of fossil-fired power plants around the policy change.13 As 
outlined above, we view the RDiT approach particularly suited in our 
case, since the policy changes can be exactly timed and happened always 
on 1 April, 00:00 h in the years 2013, 2014, and 2015. The policy 
changes increased all CO2-emitting generators' marginal costs discon
tinuously, which induced an immediate and permanently lasting rise in 
thermal power plants' marginal costs. This should thus have changed 
electricity generation and therefore emissions discontinuously but 
permanently. Fig. 4 visualizes the discontinuities in emissions in 
response to changes in the CPS rates, as predicted by our empirical 
model. 

Our approach is in the spirit of an event study, but with a higher- 
order polynomial time trend, which is estimated separately for the 
time before and after the treatment. In contrast to a standard cross- 
sectional regression-discontinuity application (as in the spirit of Lee 
and Lemieux, 2010), our approach uses time as the running variable and 

Fig. 1. Britain's effective carbon price. 
Notes: 1 April 2013–31 March 2014: CPS = £4.94 (= €5.84); 1 April 2014–31 March 2015: CPS = £9.55 (= €11.46); 1 April 2015–31 March 2021: CPS = £18.08 (=
€24.63). Sources: EEX (2018) for EUA prices; House of Commons (2016) for CPS rates (converted into Euros according to daily exchange rates from the ECB, 2019). 

12 Guo et al. (2019) find that the CPS increased Britain's electricity imports 
from France and the Netherlands. Thus, due to the CPS, emissions may have 
increased in other countries. However, although the effect is statistically sig
nificant, compared to fuel switching from coal to gas, the effect of increasing 
net imports is negligible in economic terms. While net imports increased from 3 
TWh in 2012 to 4 TWh in, 2016 (see Figure 3), coal decreased from 34 TWh to 7 
TWh during the same period. 

13 Similarly to our study, Chen and Whalley (2012) acknowledge that the 
identification of the effect of public transportation infrastructure on air quality 
is challenging, and thus propose RDiT as a suitable solution. 
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all generators are exposed to the CPS price increase on the same day, i.e. 
April 1, for three consecutive years, whereas treatment intensity 
essentially hinges upon the emission intensity of each unit. Lee and 
Lemieux (2010, p. 289) refer to “standard” regression discontinuity 
design a “local randomized experiment”, if treated and untreated units 

were sorted right above or below an arbitrary threshold, but otherwise 
(almost) identical. In our RDiT setting (which gains increasing popu
larity in environmental economics; Hausman and Rapson, 2018), the 
quasi-experimental setting depends on the key identifying assumption 
that treatment discontinuously changed generators' electricity 

Fig. 2. Britain's power sector emissions by source (MtCO2). 
Notes: Data source: BEIS (2021). 

Fig. 3. Britain's electricity generation by source (TWh). 
Notes: Renewables comprise hydro (natural flow), wind, solar, bioenergy, and pumped storage. Source: BEIS (2021). 
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Fig. 4. Discontinuous changes in CO2 emissions. 
Notes: The graphs plot the predicted average hourly CO2 
emissions by power plant after controlling for renewables, re
newables squared, demand, demand squared, hour-of-day and 
day-of-week fixed effects, and power-plant fixed effects, and a 
sixth order polynomial trend on either side of the treatment. 
The dots represent binned sample means, where the bin width 
is chosen by Stata's command “rdplot” using the option “bin
select(qs)”, which implements the IMSE-optimal quantile- 
spaced method using spacing estimators. The shaded area in
dicates a 95% confidence interval for each bin. (a) average 
over 131 coal- and gas-fired power plants, (b) average over 109 
coal- and gas-fired power plants, (c) average over 107 coal- and 
gas-fired power plants.   
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production activity (and thus emissions), while any other confounding 
variable should not be influenced by treatment. This implies that elec
tricity generation (and thus CO2 emissions) would have changed 
smoothly around the dates of the CPS jumps in the absence of treatment. 
While this assumption is not directly testable, we run placebo tests for 
hypothetical treatments one year preceding the first CPS jump and one 
year after the last CPS jump, supporting the notion that emissions 
changed smoothly around these placebo dates (see Section 5.2). More
over, we test if observable confounding variables changed smoothly 
around the treatment dates (see Section 5.4). 

A threat to identification would be a confounding event, which had 
also a step change in emissions or electricity production activity on 1 
April of the respective years. To the best of our knowledge, no such event 
took place. The only potential change that coincides with our treatment 
date would be the change of the fiscal year in Britain. However, using 
the donut regressions robustness check (see Section 5.1) as well as pla
cebo regressions for 2012 and 2016 (see Section 5.2), we can rule out 
that the change of the fiscal year is responsible for a discontinuous drop 
in emissions. Another policy, which has had an impact on power plant 
emission and which partly fell in our estimation sample, is the LCPD (EC 
Directive 2001/80/EC), which was enacted in 2001 and came into force 
in 2008. It requires EU thermal power plants above 50 MW to limit 
emissions of sulphur dioxide, nitrogen oxides, and dust. Plants could 
either comply with the policy or close after 20,000 h of remaining 
operation (‘opt-out’ option) until the end of 2015 the latest. In Britain, 9 
coal-fired power plants (and 1 oil-fired power plant) opted out, of which 
6 are not in our sample because of inactivity during our estimation 
windows.14 Hence, three coal plants that opted out appear in our sam
ple. Two coal plants reduced their production activity over time and 
phased out production during our sample period, whereas production 
cessation was not discontinuous and can thus not be directly related to a 
CPS hike. One coal plant remained active until the end of our estimation 
period. We cannot credibly assess a date when these plants quit pro
duction, because we observe a rather smooth reduction in output over 
time with partly temporal inactivity over days and even weeks. This is, 
however, evidence that the influence of the LCPD cannot be directly 
related to the effects of the CPS hikes. In our estimations, we focus on 
discontinuous changes around the treatment dates, so that we can 
largely rule out confounding bias from the LCPD. 

Furthermore, we are certain that the conditional independence 
assumption, which requires no self-selection into or out of treatment, is 
fulfilled, because all fossil-fueled power plants are subject to the CPS 
hikes. 

Another potential threat to identification would be anticipation ef
fects, which we can largely rule out in our case. In power markets, 
generation decisions are short-run decisions because electricity cannot 
be stored at a large scale. Generators usually decide one day in advance 
whether they can compete in wholesale markets and be “in the merit 
order” or not. These two arguments imply that CO2 emissions should 
react immediately to the policy changes. Thus, despite knowing in 
advance about significant jumps in the effective carbon price, power 
plant owners could not act in anticipation of the policy changes to avoid 
the negative policy effects (e.g. by producing electricity at cheaper 
carbon prices before the CPS hikes and selling it at a later date). Lemoine 
(2017) finds anticipation effects of a proposed strengthening of envi
ronmental policy (the U.S. Senate's 2010 climate effort). We do not have 

indications that the British CPS led to similar anticipation effects, e.g. 
the average annual price of coal remained fairly flat in the years pre
ceding the introduction of the CPS (2011 and 2012). Moreover, coal and 
gas cannot be stored in large amount and/or over several months either. 
Even if generators had wanted to preempt the CPS increase, they could 
not have stored coal or gas in large-enough amounts to use it longer than 
several days. Thus, in Section 5.1 we run donut regressions, in which we 
eliminate up to one month of data preceding treatment to rule out any 
such doubts. 

While a standard difference-in-differences approach only allows that 
unobserved variables affect emissions via a time trend, the RDiT model 
permits unobserved factors to affect emissions non-linearly (“splines”), 
so long as they are not discontinuous at the policy changes (Hahn et al., 
2001). This leads up the fact that with RDiT, control variables are not 
needed, but only enhance precision of the estimates. That is, even in the 
presence of time-varying omitted variables, RDiT delivers a consistent 
estimate of the effect of interest as long as the omitted variables do not 
discontinuously change around the event (Davis, 2008, footnote 12). 
Moreover, an RD approach obviates the need for a proper control 
group.15 

Finally, a particularly attractive and convincing feature of our design 
is that we cannot only estimate average treatment effects, but also het
erogeneous treatment effects across plants (Hausman and Rapson, 2018, 
fn. 10). The change in marginal costs induced by a higher carbon price, 
and therefore the treatment intensity of the policy changes, directly 
varies with the efficiency factors of the affected plants. Less efficient 
plants emit more CO2 per MWh of electricity than more efficient ones. 
Accordingly, marginal costs of less carbon efficient plants increase more 
strongly after the policy changes relative to more efficient plants. Thus, 
we would expect that less efficient coal or gas power plants reduce their 
output by more than more efficient plants (either through outright exit 
or marginally). Moreover, we expect that gas-fueled power plants, 
which emit roughly only half the CO2 per MWh than coal-fueled plants, 
should reduce their generation by less than coal-powered plants, or 
might even increase generation to substitute for the missing electricity 
from coal.16 Thus, we get clear predictions on the expected heteroge
neous treatment effects of the CPS. 

3.2. Theoretical predictions 

Electricity supply is structured according to available power plant 
capacities, ranked by their marginal costs, called the “merit order”. Its 
intersection with electricity demand determines the wholesale price of 
electricity. All available plants with lower marginal costs are infra- 
marginal and thus make variable profits by producing electricity. Any 
plant with higher marginal costs is “out of merit” and makes no variable 
profit. Without a carbon price in place or for a low carbon price (as it was 
the case before the introduction of the CPS) and for “typical” fuel prices 
(i.e. coal being cheaper than natural gas), coal plants are ranked before 
gas plants due to their lower marginal costs. With an increasing carbon 
price (e.g. due to the CPS hikes), the marginal costs of an inefficient coal 
plant (i.e. low efficiency factor, high emission factor) increase more 
strongly than those of an efficient gas plant (i.e. high efficiency factor, 
low emission factor), so that eventually the plants may change their 
positions in the merit order. Whenever such substitutions of plants take 
place at the margin (a “dirty” coal plant becomes extra-marginal, a 

14 In our dataset, we can only observe if a power plant produces or not, but 
cannot distinguish between temporary inactivity or permanent closure. In any 
case, power stations with zero production before and after treatment cannot be 
regarded in the regressions and therefore fall out of the sample. We retrieved 
our information about opted out plants from the European Environment Agency 
(EEA), which lists all British power stations, which opted out from the LCPD: htt 
ps://www.eea.europa.eu/data-and-maps/data/large-combustion-plants-lcp- 
opted-out-under-article-4-4-of-directive-2001-80-ec-4, access on Dec. 28, 2021. 

15 Since the CPS affects all thermal power plants in the UK, there is no cross- 
sectional variation in the policy implementation. Thus, a proper control group 
of non-treated thermal power plants could only be found outside the UK, trig
gering problems of potentially unobserved confounding shocks.  
16 The same reasoning also implies that non‑carbon sources of electricity such 

as hydro or nuclear power plants should either not be affected by the policy 
changes or might even increase their generation to substitute for the missing 
coal-based electricity. 
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“cleaner” gas plant becomes infra-marginal), emissions will be reduced. 
We now derive our predictions more formally using a commonly 

applied definition of marginal costs in the electricity sector (see, e.g., 
Gugler et al., 2020, especially Appendix A). The marginal costs of pro
ducing one unit of electricity, c (in €/MWh), per power-plant turbine can 
be written as a function of the fuel price, Pfuel (the price of gas in €/MWh 
or the price of coal, offered in €/1000 metric ton of thermal coal, con
verted into €/MWh using a conversion rate of one ton of hard coal being 
equal to 8.141 MWh17), the carbon price, PCO2 (in €/tCO2), the emission 
factor, ψ (in tCO2/MWh), and the efficiency factor, ω (0 < ω < 1): 

ctt,ft,cy,t =
[
Pfuel

ft,t +
(

PCO2
ft,t ⋅ψft

) ]/
ωtt,ft,cy, (1)  

where the subscripts tt, ft, cy, and t denote the turbine type, fuel type, 
construction year, and the hour of observation, respectively.18 The ef
ficiency factor, ω, measures the conversion rate of energy input to 
electricity output. In our data it is a number between 0.3 (least efficient 
unit) and 0.61 (most efficient unit).19 Moreover, the emission factor, ψ , 
measures the emissions (in tCO2) created per unit of electricity output 
(MWh) and represents a constant for coal and gas plants (i.e. 0.337 
tCO2/MWh for coal plants and 0.191 tCO2/MWh for gas plants).20 

Marginal costs decrease with the efficiency factor and increase with 
the emission factor (provided that there is a positive carbon price). We 
can see that a power station's change in marginal costs (and therefore its 
reaction to the tax) due to a change in the carbon price depends on its 
emission and efficiency factors: 

∂ctt,ft,cy,t

∂PCO2
ft,t

=
ψft

ωtt,ft,cy
. (2) 

Hence, holding fuel prices constant, an increase in the carbon price 
by means of a CPS jump leads to a stronger rise in marginal costs the 
lower the efficiency factor and the higher the emission factor. Against 
the above, we expect the most outdated coal-fired power plants to react 
most strongly to an increase in the carbon price, because their marginal 
costs will increase most substantially. The reactions should be mitigated 
for more carbon efficient plants. 

3.3. Model 

As shown above, the effect of a jump in the CPS rate on CO2 emis
sions crucially depends on the increase in power stations' marginal costs, 
which in turn changes the output decisions of plant owners. Our main 
empirical specification is therefore: 

yi,n,t = βtreatTreatt +X′
i,tβ+T′γT +(T⋅Treatt)

′

γT•treat + υi + εi,n,t, (3)  

where the outcome variable y measures CO2 emissions of power-plant 
turbine i producing electricity using input n (= coal, gas) at time t (i.e. 
each hour of the sample). Our parameter of interest, βtreat, represents the 
local average treatment effect (ATE) of the respective CPS change on 
CO2 emissions. Treatt is a treatment indicator that takes a value of one 

for all hours after the respective policy change and a value of zero 
otherwise. X is a vector of covariates including linear and quadratic 
terms of hourly demand and renewables infeed, as well as hour-of-day 
and day-of-week fixed effects. T represents a vector of a higher-order 
polynomial time trend21 to control for time-series variation in emis
sions that would have occurred in absence of the respective CPS jump. 
We also allow the time trend to differ after the policy events by including 
an interaction between the polynomial time trend and the treatment 
indicator (T ⋅ Treatt).22 υi are cross-sectional fixed effects for each power- 
plant unit. Altogether, these covariates are included to pick up any 
continuous changes in electricity market characteristics, such as varia
tions in demand and renewables infeed, as well as slowly changing 
conditions over time, such as other policy changes (e.g. power plant 
emission standards) or changing trade barriers (e.g. investments in 
cross-border interconnector capacity). ε is a heteroscedasticity-robust 
error term.23 

The key identifying assumption of our empirical approach is that the 
only reason for emissions to change discontinuously on the event dates is 
the change in the CPS rate.24 Other potentially confounding variables 
that are smoothly changing around the treatment dates, even if they 
were omitted from the regression, should have no influence on the 
estimation of the discontinuous treatment effect. Our flexible specifi
cation controls for nonlinearities in emissions by using polynomial time 
trends, and allows us to isolate the changes in emissions attributable to 
the CPS. Our econometric identification thus also accounts for a negative 
trend in emissions since 2007, as shown in Fig. 2, because it is unlikely 
that emissions would have changed discontinuously around the dates of 
the CPS hikes on April 1 of the years 2013, 2014, and 2015 (besides 
controlling for any trend effects by our polynomic time-trend specifi
cation). Moreover, we expect heterogeneous effects across power sta
tions, since treatment intensity (inversely) varies with efficiency factors, 
which adds another source of identification. 

Another caveat is that there may be a potentially endogenous rela
tionship between emissions and electricity demand, for example if 
consumers became aware of the negative effects of emissions and thus 
reduced electricity demand. However, we analyze the wholesale market 
and not the retail market. Firms in the wholesale market surely do not 
take into account emissions (other than via the CO2 price) but maximize 
profits. Consumer awareness of the electricity generation mix in the 
wholesale market on specific days (or even hours) may be very limited. 
This, of course, does not rule out secular reactions of consumers over 
time, such as by choosing green tariffs or saving energy, etc., but we do 
not expect feedback effects to demand within the granular time span (in 
the extreme case one hour) we analyze. Hence, in line with other studies 
on power sector emissions (see, e.g., Cullen and Mansur, 2017; Fell and 
Kaffine, 2018; Gugler et al., 2021), environmental damages (Fell et al., 

17 https://www.iea.org/data-and-statistics/data-tools/unit-converter 
18 tt ∈ {combined cycle, combustion turbine, internal combustion, steam tur

bine}, ft ∈ {lignite, hard coal, gas}.  
19 In our sample, coal plants have an average efficiency factor of 0.35, with a 

minimum of 0.33 and a maximum of 0.48. Gas plants have an average effi
ciency factor of 0.57, with a minimum of 0.30 and a maximum of 0.61.  
20 These values were provided by the Austrian Transmission System Operator, 

APG. Similarly, the Department for Business, Energy & Industrial Strategy 
(BEIS, 2022) reports a U.K. specific emission factor for coal of 0.335 tCO2/MWh 
and for natural gas of 0.202. Similar values can be found in German Environ
ment Agency (2016), reporting a CO2 conversion factor for British bituminous 
coal (“egg coal, England”) of 95.913 tCO2/TJ, which is equivalent to 0.345 
tCO2/MWh, and for natural gas (“Norway, winter”) of 56.12 tCO2/TJ, which is 
equivalent to 0.202 tCO2/MWh. 

21 As we describe later in more detail, we chose a sixth-order polynomial time 
trend in our main specification.  
22 Similarly, Chen and Whalley (2012) and Lang and Siler (2013) include both 

a polynomial time trend and its interaction with the post-treatment indicator, 
whereas Davis (2008) and Auffhammer and Kellogg (2011) apply less flexible 
specifications using only polynomials in time without interactions.  
23 Applying Newey-West standard errors to control for potential auto- 

correlation does not alter our main results (i.e. jump 1: ATE = − 16.51, p-val. 
= 0.00; jump 2: ATE = − 10.72, p-val. = 0.00; jump 3: ATE = − 10.01, p-val. =
0.00).  
24 Even in the presence of time-varying omitted variables, RDiT delivers a 

consistent estimate of the effect of interest as long as the omitted variables do 
not discontinuously change around the event (Davis, 2008, footnote 12). In our 
case, it is hard to think of any confounding effects, which may change 
discontinuously on 1 April of 2013, 2014, and/or 2015. One such event would 
be the change of the fiscal year in Britain. However, using the donut regressions 
robustness check (see Section 5.1) as well as placebo regressions for 2012 and, 
2016 (see Section 5.2), we can rule out that the change of the fiscal year is 
responsible for a discontinuous drop in emissions. 
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2021), or electricity production from coal-fired power plants (Bushnell 
and Novan, 2021), we assume electricity demand to be exogenous in the 
short run. 

Our main coefficient of interest, βtreat, is a local average treatment 
effect, which gives the change in emissions in response to the respective 
policy changes per power station per hour. That is, RDiT may precisely 
estimate the effect of the CPS, because it investigates a local treatment 
effect in the form of step changes in emissions, which would not have 
occurred without the CPS jumps. We thus measure short-run effects in 
the form of changes in the given supply structure. We can identify 
substitution effects between power stations using natural gas or coal and 
for different efficiency factors. However, we cannot identify the long- 
run effects of the CPS in terms of investments in new generation as
sets. It would only be possible to empirically observe capacity in
vestments, as triggered by the CPS, with a significant time lag, given that 
it may take years to plan and build new power plants or add blocks to an 
existing power plant (Gugler et al., 2020). Such investments would 
change the supply structure and thus emissions, but cannot be captured 
by our model. However, the abatement effects of the CPS that we 
identify will last as long as the marginal costs of existing plants are 
influenced by the new tax rate. Hence, a higher carbon tax rate will shift 
the marginal costs and thus the merit order for as long as it is in place. In 
order to get economically meaningful results, it is worthwhile to 
calculate longer-term effects by the means of a back-of-the-envelope 
calculation. That is, we multiply the effect of interest by the number 
of stations k in the sample (i = {1,…,k}) times the number of hours per 
year (i.e. 8760) to arrive at an annual aggregate treatment effect: βtreat ⋅ 
k ⋅ 8,760. The assumption behind is that the CPS changes the marginal 
costs of power plants as long as the new CPS rate applies, so that its effect 
should last for a whole year (and beyond that). It is crucial to mention 
that this aggregate effect holds only ceteris paribus, meaning for given 
market circumstances around the treatment dates. Any other significant 
exogenous events that have an impact on power stations' production or 
emission activity are not taken into account in this approach. 

Moreover, in an alternative regression we interact the treatment 
indicator with power-plant turbine fixed effects to estimate plant-specific 
(heterogeneous) treatment effects: 

yi,n,t = βi,treatTreatt⋅υi +X′

i,tβ+T ′

γT +(T × Treatt)
′

γT•treat + υi + εi,n,t. (4) 

In this case, β̂ i,treat is a 1 × k vector of i = (1,…,k) turbine-specific 
treatment effects. 

A few other remarks on our specification are worth mentioning. We 
apply a polynomial time trend in our main specification, which is 
differentially estimated before and after the event dates to control for 
any smoothly changing unobservable factors. We follow related appli
cations of RDiT to environmental issues (e.g. Davis, 2008; Auffhammer 
and Kellogg, 2011; Chen and Whalley, 2012; Lang and Siler, 2013) using 
higher-order polynomials, and chose a sixth-order polynomial trend, 
which minimized the AIC criterion compared to lower-order specifica
tions. Another argument for applying higher-order local polynomials is 
that these tend to outperform local linear and lower-order local poly
nomials in terms of their mean squared error, coverage rate of the 
confidence interval, and confidence interval length, especially when the 
sample size is large as in our case (Pei et al., 2018). 

3.4. Data 

We utilize high-frequency data on hourly electricity generation of all 
British thermal power plant units (i.e. turbines) to calculate CO2 emis
sions at the turbine level over time. The granularity of our data is a key 
feature of our analysis, because turbine-specific CO2 emissions at the 
hourly frequency are, to the best of our knowledge, not available for 
Britain (or Europe) from publicly available sources. Our data stem from 
S&P Global Platts, a major independent data and information provider 
for the energy and commodities markets. Our data sample spans 1 April 

2012–31 March 2016, allowing for event windows of one year on either 
side of the tax jumps.25 We observe 57 coal units and 74 gas units, which 
were active26 during the pre-treatment period (01Apr2012 −

31Mar2013). For these units, we also have information about nameplate 
capacity, vintage, fuel type, and turbine type. 

We are thus able to calculate turbine-specific hourly CO2 emissions: 
yi, n, t = gi, n, t ⋅ ψn/ωi, n, where y are CO2 emissions, g is electricity pro
duction, ψ is the emissions factor, ω is the efficiency factor, and the 
subscripts denote the turbine i, fuel input n (coal, gas), and sample hour 
t. The technology-vintage-specific emission and efficiency factors are 
provided by the Austrian Transmission System Operator, Austrian 
Power Grid (APG), according to fuel type and plant vintage.27 These 
emissions data are also used by Gugler et al. (2021), who mention that 
the constructed data, aggregated to the annual frequency for the period 
2012–2017, are 99% consistent with official statistics reported by the 
UK Department for Business, Energy & Industrial Strategy (BEIS, 2021). 

Regarding the control variables, we obtained the hourly electricity 
feed-in from intermittent renewable energies in the form of wind and 
solar power and electricity demand from Gridwatch,28 an independent 
data provider, working in collaboration with Sheffield University and 
Elexon Portal, an information provider under the regulation of the Office 
of Gas and Electricity Markets (Ofgem). Table A1 provides summary 
statistics of the variables employed in our regressions. 

4. Results 

4.1. Average treatment effects 

Table 1 summarizes the estimates of the ATEs as the causal effect the 
CPS averaged over all individual power plants. The estimates are based 
on the regressions of eq. (3) and their full output is provided in the 
Appendix Table A2. The reported ATEs are statistically significant at the 
1% level (except for the ATE of tax jump 1 for gas plants, which is sig
nificant at the 10% level). 

We should emphasize that our ATEs measure the average emissions 
reduction per power plant per hour. We can then extrapolate this esti
mate over all treated power plants over one year as to provide a 
reasonable estimate of the overall magnitude of the effect. For the CPS 
jumps 2 and 3, our estimates give the additional abatement associated 
with an increase in the CPS (relative to already abated emissions for the 
previous CPS changes). This implies that we can eventually aggregate 
the ATE estimates for each tax jump to arrive at total emissions abate
ment due to the CPS hikes. 

Looking at panel A of Table 1, we estimate that the introduction of 
the CPS on 1 April 2013 led to an average reduction in emissions across 
all coal and gas power plants by 16.5 tCO2 per hour in the post-treatment 

25 We chose one year of data on either side of the respective CPS jump 
following Chen and Whalley (2012) and Davis (2008), who state that it may 
become difficult to properly control for seasonal variation with shorter event 
windows. Although our data would have been available for a longer period, 
adding information further from the event dates may not significantly enhance 
the precision of our estimates, but rather imperil validity as the likelihood of 
unobserved confounding factors increases.  
26 We treat a plant as active as long as it produced electricity (and thus 

emissions) during the 365 days prior to the respective tax jump.  
27 The reason why we use technology-vintage-specific emission and efficiency 

factors from an Austrian TSO (APG) is that these data had a higher level of 
detail and seemed most reliable. That is, APG provided efficiency factors that 
varied by vintage and electricity production technology. Other publicly avail
able data were not as detailed. Also, the emission factors by electricity- 
generation technology from APG are of high quality. However, comparing the 
data from APG with other sources showed generally high consistency. See also 
Footnote 20 on this issue. Using the same raw data, Gugler et al. (2021) provide 
a detailed description of how the emissions data are constructed.  
28 www.gridwatch.templar.co.uk. 
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period 01Apr2013–31Mar2014. Aggregated over all 131 power plants 
and over 8760 h, this effect translates into emissions abatement of 18.9 
MtCO2 per year. Relative to the pre-treatment period 
01Apr2012–31Mar2013, our ATE estimate suggests a reduction of CO2 
emissions of 11.6%. We also find significant effects for the two subse
quent elevations of the carbon tax. Tax jump 2 brought about an ATE of 
− 10.7 tCO2 per plant per hour, which gives a total abatement of 10.2 
MtCO2/yr over the remaining 109 active power plants, or − 7.54% 
relative to emissions prior to the introduction of the CPS 
(01Apr2012–31Mar2013). Finally, tax jump 3 is of a similar magnitude, 
amounting to an ATE of − 10.0 tCO2 per plant per hour, which accords to 
− 9.4 MtCO2/yr over the remaining 107 active power plants. 

Relative to the period before the tax was introduced, this represents a 
7.1% reduction of emissions. Our finding that the ATE is highest for the 
first tax jump can be explained by many inefficient power plants still 
operating, which display the largest treatment effects (see Section 4.2). 
After the first tax jump, 16 coal-fired and six gas-fired plants cease their 
operations. Thus, for the subsequent tax jumps we observe more effi
cient plants, on average. The cumulative effect of the CPS at the end of 
the third evaluation period (31 March 2016) amounts to a reduction of 
38.6 MtCO2 or 26.2% CO2 emissions from the British power sector 
compared to a counterfactual situation without the CPS in place. 

Let us put these estimates into perspective. According to our data on 
sample emissions, the average hourly emissions per plant fell by 43.9% 
from 142.12 tCO2 during the pre-treatment period 
01Apr2012–31Mar2013 to 79.78 tCO2 during the period 
01Apr2015–31Mar2016. Our estimated cumulative ATE (− 26.2%) of 
the CPS, thus, explains about 60% of the total reduction in emissions. 
The remainder 40% of the drop in emissions can be explained by other 
confounding effects, as for example the surge in renewable energies, 
decreasing energy demand, or stricter emissions standards for power 
plants (e.g. the LCPD). 

We now investigate coal and gas plants separately. Panel B of Table 1 
estimates that the introduction of the CPS led to a sizable reduction in 
average hourly coal plant emissions by 36.48 tCO2. For the 58 active 
coal plants at that time, we estimate an aggregate ATE of − 18.2 MtCO2 
in the post-treatment year (01Apr2013–31Mar2014), which is a relative 
reduction in coal-based emissions by 13.4%. We then estimate an ATE of 
− 35.8 tCO2 per coal plant per hour from the tax increase on 01 April 
2014, which corresponds to an abatement of 13.2% relative to the 
period before the CPS was introduced. Aggregating over the still active 
41 coal plants, this amounts to an emissions abatement of 12.8 MtCO2/ 
yr during 01Apr2014–31Mar2015. Finally, the last tax increase reduced 
hourly emissions per coal plant by 36.7 tCO2, which accords to a change 
of − 13.5% relative to the period before the tax was introduced. For the 

39 still active plants at that time, the aggregate ATE amounts to − 12.5 
MtCO2/yr. The cumulative effects for coal plants is thus estimated at 
− 43.6 MtCO2 during 01Apr2013–31Mar2016, which is equivalent to a 
reduction of 40.1% of coal-based emissions. 

Our estimates explain an even larger part of the total reduction in 
coal-based emissions, which decreased from 272 tCO2 per coal plant per 
hour in the year before jump 1 to 123 tCO2 in the year after jump 3, 
amounting to a drop by 54.8%. This means that about three quarters of 
the total drop in coal-based emissions can be solely attributed to the 
CPS. We conclude that the introduction of the CPS and its two subse
quent elevations led to a sizeable reduction in coal-based emissions in 
Britain. 

Panel C of Table 1 shows that the magnitude of the estimated ATEs is 
much less pronounced for gas plants, because they produce significantly 
less CO2 (around 60%) per unit of electricity compared to coal plants. 
The introduction of the CPS led to a minor reduction in average gas 
plants' hourly emissions by 1.1 tCO2 (i.e. -2.7%), amounting to an 
aggregate ATE of − 0.7 MtCO2/yr. It is worth noting that the CPS did not 
elevate the total carbon price (= ETS price + CPS) enough to induce a 
fuel switch between coal and gas, as if so, emissions from gas would have 
increased due to an increase of the electricity production from gas. 
However, this is exactly what we observe during the two subsequent tax 
increases in 2014 and 2015. The tax jumps 2 and 3 led to an increase in 
average gas-based emissions by 10.6% and 12.7%, respectively. Alto
gether, the cumulative effect of the CPS on gas-based emissions is pos
itive, amounting to 5 MtCO2. 

Notably, the first tax jump yielded an aggregate ATE of − 18.9 
MtCO2, which is significantly more pronounced than the successive 
ATEs for the second (− 10.2 MtCO2) and third tax jump (− 9.4 MtCO2), 
whereas the CPS rate was significantly lower (£4.94 = €5.84) during the 
first treatment period, 1 April 2013–31 March 2014, relative to the 
second (£9.55 = €11.46; 1 April 2014–31 March 2015) and third 
(£18.08 = €24.63; 1 April 2015–31 March 2016). This can be explained 
by the fact that the first tax jump was already sufficient to introduce a 
fuel switch between the least efficient coal plants and the most efficient 
gas plants, which has led to significant abatement. Then, the second and 
third jumps implied higher tax increases, whereas the switching po
tential was less pronounced, meaning that only the more efficient coal 
plants could be replaced. This is something that we investigate further 
looking at the heterogeneous treatment effects across power stations. 

4.2. Heterogeneous treatment effects 

We now investigate plant-specific effects of the CPS, allowing for 
varying treatment intensity by plant. Our prior is that the carbon tax had 

Table 1 
Average treatment effects.   

ATE per plant per 
hour (tCO2) 

# power plants Aggregate ATE over all plants for a whole year (MtCO2) Change relative to period before 1st tax jump 

Panel A: coal & gas plants 
Tax jump 1 (01Apr2013) − 16.51 (1.226) 131 − 18.9 − 11.62% 
Tax jump 2 (01Apr2014) − 10.71 (1.294) 109 − 10.2 − 7.54% 
Tax jump 3 (01Apr2015) − 10.03 (1.351) 107 − 9.4 − 7.06% 
Total − 37.25   − 38.6 − 26.21% 
Panel B: coal plants 
Tax jump 1 (01Apr2013) − 36.48 (2.651) 57 − 18.2 − 13.41% 
Tax jump 2 (01Apr2014) − 35.77 (3.051) 41 − 12.8 − 13.15% 
Tax jump 3 (01Apr2015) − 36.73 (3.170) 39 − 12.5 − 13.50% 
Total − 108.98   − 43.6 − 40.06% 
Panel C: gas plants 
Tax jump 1 (01Apr2013) − 1.119 (0.662) 74 − 0.7 − 2.69% 
Tax jump 2 (01Apr2014) 4.394 (0.706) 68 2.6 10.56% 
Tax jump 3 (01Apr2015) 5.284 (0.652) 68 3.1 12.69% 
Total 8.559   5.0 20.56% 

Notes: ATE = average treatment effect. Aggregate ATE = ATE per plant per hour * # plants * 8760 h. Average emissions per plant during period before 1st tax jump 
(01Apr2012 − 31Mar2013): all coal and gas plants = 142.1 MtCO2, coal plants = 272.1 MtCO2, gas plants = 41.6 MtCO2. Robust standard errors in parentheses. 
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a stronger impact on relatively inefficient power plants. 
Table 2 summarizes the estimates of these heterogeneous treatment 

effects, as based on regressions of eq. (4).29 In line with our theoretical 
predictions (c.f. Section 3.2), the majority of coal plants reduce their 
emissions significantly, with a total net reduction of − 4979 tCO2/h (i.e. 
-43.6 MtCO2/yr). While some inefficient gas plants also reduce their 
emissions due to the CPS (in total by − 1305 tCO2/h), a substantially 
larger fraction increases emissions (in total by 1880 tCO2/h), which 
yields a net increase by 575 tCO2/h (i.e. 5.0 MtCO2/yr). 

We assume that heterogeneous plant efficiencies may explain plant- 
specific reactions to the tax hikes. We thus run second-stage regressions 
of the estimated plant-individual effects on each plant's ratio of emission 
to efficiency factor (in the spirit of eq. (2)) and controlling for capacity 
(to control for size effects): 

β̂i,treat = a+ b⋅
(ψ

ω

)

i
+ c⋅capi + εi.

Appendix Table A6 presents the results, which show that less carbon 
efficient plants reduce generation and therefore emissions by more than 
more carbon efficient plants, which is in line with our expectations (see 
Section 3.2). From the pooled regression (column (4)), we estimate that 
decreasing plant carbon efficiency by one standard deviation (= 0.32), 
the estimated ATE decreases by around 20 tCO2 per hour, which is 
sizeable.30 Interestingly, the estimates of b̂ decrease from − 53.3 (2013) 
over − 66.0 (2014) to − 71.3 (2015) for consecutively higher CPS rates. 
This is exactly what we would expect if carbon efficiency becomes 
increasingly important for higher carbon prices. At high-enough carbon 
prices, only the most carbon efficient plants stay in the merit order, 
while the others become extra-marginal. 

In conclusion, while our average treatment effects already suggest 
that the CPS resulted in a significant drop in emissions, it hides signifi
cant plant-specific heterogeneity. Thus, our plant-specific estimates 
reveal that carbon intensive plants reduce their electricity generation by 
more than less carbon intensive plants. 

4.3. Tax implications 

Given our estimates of the abatement effects of the CPS, we can 
discuss the tax implications of this policy by means of a back-of-the- 
envelope calculation. Our main point is to provide an estimate of tax 
payments due to the CPS in relation to the amount of emissions abate
ment. This can be interpreted as a measure of average tax payments per 
ton of CO2 abated. From this, electricity consumers may learn how much 
CO2 abatement they “buy” for the implemented CPS rate. Thus, with 
limited state resources or limited possibilities for taxation, it may be 
interesting which measures are “cheapest”. However, we do not further 
evaluate how the state may redistribute the tax revenues, because we are 
not able to calculate general equilibrium effects from our model. 

During the first period 01Apr2013 − 31Mar2014, the introduction of 
the CPS at a rate of €5.84/tCO2 led to tax payments of €810 million from 
an emissions stock of 139 MtCO2. Evaluated against an abatement of 
18.9 MtCO2 due to the CPS, we calculate taxes paid of €43/tCO2. During 
the period 01Apr2014 − 31Mar2015, tax payments amounted to €1105 
million, given a higher CPS rate of €11.46/tCO2 and a lower emissions 
stock of 96 MtCO2. Together with cumulative abatement of 29.1 MtCO2 
(in the first two years), the taxes paid per ton of CO2 abated are even 
lower at €38/tCO2. Finally, during the period 01Apr2015 − 31Mar2016, 
the CPS was raised to a rate of €24.63/tCO2, with an emissions stock of 
75 MtCO2. This created tax payments of €1842 million. Hence, we 
calculate now somewhat higher taxes paid of €48/tCO2 for a cumulative 
abatement of 38.5 MtCO2 (in three years 01Apr2013–31Mar2016). This 

is evidence that for a moderate carbon tax, it is relatively efficient to 
abate emissions. 

4.4. Other electricity generation sources 

The above analysis showed that especially inefficient coal-fired 
power plants reduce their electricity output in reaction to the CPS 
jumps. We saw gas reacting to the second and third jumps of the CPS, 
however, imports or other electricity generation technologies, such as 
run-of-river hydro or nuclear power plants, as well as demand (see 
Section 5.4) might also react to the CPS. In economic terms, it becomes 
relatively cheaper to produce electricity via low-carbon technologies, 
because their marginal costs decrease relative to fossil-fueled technol
ogies. However, hydro and nuclear plants are baseload technologies, 
which usually run at already high capacity utilization rates and may thus 
have limited scope for accommodating their electricity output (in 
contrast to relatively flexible gas-fired plants). We thus expect hydro and 
nuclear not to react to the CPS or if, only modestly, given their capacity/ 
flexibility constraints. We use data on hydro and nuclear electricity 
production from Platts to assess if these technologies change discon
tinuously in reaction to the CPS. It is worth mentioning that these data 
are only aggregate time-series and thus have limited predictive statis
tical power (i.e. 730 daily observations). Fig. 5 visualizes how hydro and 
nuclear electricity vary around the time of the first tax jump in 2013. 

Fig. 5a indicates a moderately positive discontinuous jump in the 
electricity production from hydropower (+2.99 GWh per day) after the 
policy change, which turns out statistically significant (p < 0.01). Hy
dropower thus reacted discontinuously but only within its limited scope 
in reaction to the CPS jump and filled a small part of the production gap 
from coal. Moreover, Fig. 5b plots the reaction of nuclear power to the 
CPS. The discontinuous jump is estimated at 16.2 GWh but statistically 
insignificant (p-value of 0.175). 

Finally, the CPS increases the costs of the British electricity supply 
compared to untreated neighboring countries. Hence, the British im
ports might increase right after the policy change. Fig. 5c indicates that 
net imports increase discontinuously by 10.36 GWh per day in order to 
help reestablish the demand-supply balance. This corroborates the 
finding by Guo et al. (2019) that part of the electricity gap from coal was 
filled by imports. As noted by Guo et al. (2019), this created emissions in 
foreign electricity markets, which we do capture by our analysis. 

However, a back-of-the-envelope calculation may help putting the 
emissions created by the estimated increase in Britain's imports in 
response to the CPS into perspective. During our sample, about 64% of 
the British imports came from France, 34% from the Netherlands, and 
only 2% from Ireland. We ignore the latter for its negligible share. 
However, the Netherlands had a high share of electricity generation 
from coal and gas fired power plants (about 80%). We use hourly data on 
electricity generation by technology (from ENTSO-E, 2022) and average 
emission and efficiency factors for coal and gas power plants (from our 
data) to calculate the CO2 intensity of one MWh of electricity production 
in the Netherlands, finding an average emission intensity of about 450 
kgCO2/MWh. Using the same data sources for France, which mainly 
employs nuclear and hydro power, resulting in much lower emissions, 
we find an average emission intensity of only 27 kgCO2/MWh. Thus, one 
MWh of British imports would create 170 kgCO2 abroad (= 450 kgCO2/ 
MWh ⋅ 0.34 + 27 kgCO2/MWh ⋅ 0.64). For the estimated increase in 
British imports by 10.36 GWh per day (which amounts to 3781.4 GWh 
per year) due to the CPS, our calculations yield additional emissions of 
0.645 MtCO2 per year, which is relatively small (only 3.4%) compared 
with the estimated emissions abatement of 18.9 MtCO2 per year (see 
Table 1) in response to the CPS. 

While this shows that carbon leakage within the electricity sector 
may has had a minor direct effect via imports, there are (at least) two 
other sources of carbon leakage. (i) It may be the case that the CPS 
increased the price of electricity as an input for other industrial and 
commercial goods, thereby leading to leakage in other sectors than 

29 Appendix Tables A3 and A4 provide the full regression outputs for coal and 
gas plants, respectively.  
30 The range of (ψ/ω)i is 0.31–1.02. 
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Table 2 
Heterogeneous treatment effects.   

Negative coefficient Positive coefficient Total  

# power 
plants 

Avg. effect (tCO2/ 
h) 

Avg.  
t-val. 

Total effect (tCO2/ 
h) 

# power 
plants 

Avg. effect (tCO2/ 
h) 

Avg.  
t-val. 

Total effect (tCO2/ 
h) 

Net effect (tCO2/ 
h) 

Panel A: coal plants 
Tax jump 

1 
38 − 99.83 − 28.65 − 3794 19 90.20 23.77 1714 − 2080 

Tax jump 
2 25 − 104.45 − 26.37 − 2611 16 71.55 16.95 1145 − 1466 

Tax jump 
3 24 − 102.52 − 24.45 − 2461 15 68.55 16.50 1028 − 1433 

Total  − 307  − 8866  230  3887 − 4979 
Panel B: gas plants 
Tax jump 

1 
34 − 17.60 − 16.35 − 598 40 12.89 12.54 515 − 83 

Tax jump 
2 29 − 12.05 − 10.07 − 349 39 16.62 15.16 648 299 

Tax jump 
3 23 − 15.56 − 13.95 − 358 45 15.94 15.82 717 359 

Total  − 45.21  − 1305  45.45  1880 575 

Notes: “Avg. effect” gives the effect of the respective CPS jump on emissions (tCO2) per power plant per hour. “Total effect” is the aggregated effect over all plants (=
avg. effect • # plants) per hour. “Net effect” is the sum of positive and negative total effects. 

Fig. 5. Developments of hydro electricity, nuclear electricity, and imports. 
Notes: coeff. = 10.36, p-value = 0.057. 
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electricity. (ii) The “waterbed effect” (Perino, 2018; Rosendahl, 2019a), 
which specifically applies for international emission trading schemes, 
predicts that any national policy measure to abate emissions (e.g. the 
British CPS) for a fixed emissions cap would free up emission allowances 
somewhere else (in other economic sectors or other countries within the 
ETS) and thus lead to zero abatement in aggregate. However, our esti
mates remain informative about the scope of abatement a carbon price 
may achieve if the emissions cap in the ETS was reduced according to the 
emissions abatement by the unilateral policy.31 

4.5. What filled the gap in electricity supply from coal? 

Our combination of data and method (RDiT) at hand are not 
particularly suitable for answering which other supply technologies or 
measures filled the discontinuous supply gap from the CPS. We utilize 
station-level panel data for coal and gas electricity production to infer 
about the emissions reaction due to the CPS. Data on other variables are 
quite limited. For example, we have data on electricity production by 
other main supply technologies, such as hydro and nuclear power, and 
on electricity imports only at the aggregate level and for the daily fre
quency. It is thus not the immediate focus of this paper to answer which 
other technologies filled the supply gap created by the CPS. Let us, 
nevertheless, try to give a brief answer to this question based on our 
limited information. 

From our estimates on the introduction of the CPS in 2013, we 
identify a discontinuous decline in coal-fired electricity of 18 GWh per 
day and 2 GWh gas-fired electricity.32 Our above estimates suggest that 
hydro electricity increased by nearly 3 GWh per day (Fig. 5a) and im
ports filled another 10.4 GWh (Fig. 5c), explaining roughly 67% of the 
supply gap. For nuclear power, we find a sizeable effect of 16 GWh, 
which is however statistically insignificant. Given the limited sample 
size, we cannot rule out though that nuclear electricity may have also 
filled part of the gap. Unfortunately, we have no precise data on other 
supply technologies, such as biomass, biogas, waste incineration, or 
pumped storages, which may have also reacted in response to the CPS. 

5. Robustness 

5.1. Anticipation effects 

Above we have argued that anticipation effects are unlikely because 
electricity cannot be stored in economically sensible amounts. Thus, 
despite knowing in advance that the CPS was to be introduced or 
elevated, it would still be economical for electricity companies to adjust 
their production in reaction to the change in marginal costs due to the 
treatment instead of reacting in anticipation. Nevertheless, production 
adjustments in the form of ramping and cycling may cause additional 
costs and take time, so that it is possible that power plants may reduce 
their electricity production some days preceding a tax jump. This would 
mean that our results slightly understate the “true” effect. To rule out 
such and related concerns empirically, we apply “donut regressions”, in 
which we eliminate observations (i.e. one week, two weeks, and one 
month) prior to the treatment dates. 

Table 3 summarizes the results. Panel A eliminates a full week of 

observations (i.e. 168 h) predating the treatment dates. Evidently, the 
estimated ATEs per plant per hour stay robust to the main results (c.f. 
Table 1). Moreover, Panel B eliminates two weeks (i.e. 336 h) of data 
prior to the respective treatments. Again, the results support our main 
results, indicating that anticipation effects are no threat to our identi
fication strategy. Finally, even dropping the whole month (i.e. March, 
744 h) predating the treatment, we arrive at relatively similar ATE es
timates. Besides ruling out anticipation effects, our “donut” approach 
also adds credibility by showing that changes in the bandwidth of up to 
one months do not significantly alter our results. 

5.2. Placebo tests 

We are able to conduct placebo tests for the dates April 1, 2012, one 
year prior to Britain's introduction of the CPS, and April 1, 2016, one 
year after the last CPS hike. Thus, for these two fictitious treatments, we 
should not be able to measure any significant discontinuous change in 
carbon emissions. 

The results are depicted in Fig. 6. As expected, we find no statistically 
significant treatment effect for either of the two placebo treatment dates. 
This is evidence that our above analysis actually measures treatment 
effects of the carbon tax jumps. Moreover, this underlines that plant 
closures in the aftermath of the CPS jumps are actually attributable to 
the CPS jumps, as we argue above, because there is no evidence of 
further plant closures in our placebo analysis. This additionally makes 
clear that plants' electricity production does not vary with the beginning 
of the new fiscal year in the UK. 

5.3. Analysis at the daily frequency 

So far, we have employed data at the hourly frequency to estimate 
the causal effect of the CPS on CO2 emissions. As a robustness check, we 
now re-run our main specifications using data at the daily frequency. 

Table 4 provides an overview about the estimated ATEs based on 

Table 3 
Donut regressions: average treatment effects.   

ATE per 
plant per 
hour (tCO2) 

# power 
plants 

Aggregate ATE 
over all plants for a 
whole year 
(MtCO2) 

Change 
relative to 
period before 
1st  
tax jump 

Panel A: coal & gas plants: eliminating one week prior to treatment 
Tax jump 1 

(01Apr2013) − 17.96 131 − 20.6 − 12.64% 
Tax jump 2 

(01Apr2014) − 10.32 109 − 9.9 − 7.26% 
Tax jump 3 

(01Apr2015) − 10.06 107 − 9.4 − 7.08% 
Total − 38.34  − 39.9 − 26.98% 
Panel B: coal & gas plants: eliminating two weeks prior to treatment 
Tax jump 1 

(01Apr2013) − 19.40 131 − 22.3 − 13.65% 
Tax jump 2 

(01Apr2014) − 9.90 109 − 9.5 − 6.97% 
Tax jump 3 

(01Apr2015) − 10.55 107 − 9.9 − 7.42% 
Total − 39.84  − 41.6 − 28.04% 
Panel C: coal & gas plants: eliminating one month prior to treatment 
Tax jump 1 

(01Apr2013) − 23.09 131 − 26.5 − 16.24% 
Tax jump 2 

(01Apr2014) − 10.32 109 − 9.9 − 7.26% 
Tax jump 3 

(01Apr2015) − 12.39 107 − 11.6 − 8.72% 
Total − 45.79  − 48.0 − 32.22% 

Notes: ATE = average treatment effect. Aggregate ATE = ATE per plant per hour 
• # plants • 8760 h. Average emissions per plant during period before 1st tax 
jump (01Apr2012 − 31Mar2013): all coal and gas plants = 142.1 MtCO2. All 
ATE estimates are statistically significant at least at the 10% level. 

31 In 2019, the EU ETS was reformed to preclude the waterbed effect. The 
Market Stability Reserve aims to reduce the supply of emission certificates 
according to the estimated emissions abatement by additional unilateral pol
icies (Appunn, 2019). 
32 Using average CO2 emission factors of 0.337 and 0.191 and efficiency fac

tors of 0.348 and 0.566 for coal and gas stations in our sample, we can re- 
convert the estimated reduction in emissions given in Table 1 to GWh of 
electricity: GWhn = (yn ⋅ ωn)/ψn, where y denotes the CO2 emissions, ω the 
efficiency factor, and ψ the emission factor, by supply technology n (coal or 
gas). 
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daily data (the underlying regression output is provided in Appendix 
Table A6). The analysis of daily data gives a slightly smaller overall 
effect of − 34.1 MtCO2 (= − 22.5%) than using hourly data (where we 
estimated − 38.6 MtCO2). Regarding coal plants, the daily result is − 40.7 
MtCO2 (= − 36.2%), and for gas plants, we estimate a cumulative effect 
of +6.6 MtCO2 (= 27.1%). One reason for the divergences – which are 
not pronounced though – may be that our initial analysis also includes 
hourly fixed effects, and thus may better capture production adjust
ments during a day. In general, however, the daily analysis adds credi
bility to our main estimates as the estimates are fairly comparable. 

5.4. Testing for discontinuities in confounding variables 

A fundamental assumption of RDiT is that covariates should be 
smoothly changing around the policy events, so that we can identify the 
causal effect of the carbon tax hikes by a discontinuous reaction in 
emissions. It is possible to test whether renewables or demand indeed 
show a smooth variation around the tax jumps. 

Wind and solar power feed into the electricity system whenever the 
wind blows or the sun shines. These renewables should thus not be 
affected by the introduction of the CPS. Indeed, Fig. 7(a) shows that the 
feed-in from wind and solar power changes smoothly around the treat
ment date (p-value of 0.845). Moreover, there is a vast amount of 
empirical studies showing that electricity demand reacts rather inelas
tically to electricity price changes. Hence, we would expect demand not 
to react to the CPS, or, in case of a discontinuous reaction, only nega
tively. Fig. 7(b) shows that demand changes rather smoothly around the 

treatment date (i.e. p-value of 0.210). 
As can be seen from Appendix Table A1, however, electricity demand 

gradually declined (from around 36.8 GWh in 2012/2013 before the 
introduction of the CPS to around 32.5 GWh in 2015/2016 after the last 
elevation of the CPS), while electricity production from renewable 
sources gradually increased over time in the UK. Both adjustments helped 
substituting for the missing coal fired electricity production during that 
time period (besides more gas-fired electricity and imports). 

6. Conclusion 

This paper assesses the causal effects of a unilateral tax (the CPS) on 
carbon emissions from the British power sector. Our identification ex
ploits the discontinuous nature of the CPS introduction in 2013 and its 
elevations in the two subsequent years. Thus, regression discontinuity in 
time allows to disentangle the discontinuous effects of the carbon tax 
jumps on emissions from other confounding factors, such as a rise in 
renewables, a decline in demand, seasonal patterns, or other policy in
fluences, which should be smoothly changing around the dates of the tax 
jumps. 

Our paper shows that a carbon tax can lead to substantial emission 
reduction. The British power sector emissions fell by 38.6 MtCO2 within 
the three years after the respective tax jumps, making up abatement of 
26% relative to pre-treatment emissions. The carbon tax is thus 
responsible for about 60% of the overall decline in emissions by 43.9% 
during that period. Most notably, we estimate that the carbon tax 
decreased coal-based emissions significantly by around 40% (43.6 

Fig. 6. RDiT placebo tests for fictitious treatment on April 1 of 2012 and 2016.  

Table 4 
Daily frequency: average treatment effects.   

ATE per plant per day (tCO2) # power plants Aggregate ATE over all plants for a whole year (MtCO2) Change relative to period before 1st jump 

Panel A: coal & gas plants 
Tax jump 1 (01Apr2013) − 466.6 131 − 22.3 − 13.68% 
Tax jump 2 (01Apr2014) − 142.0 109 − 5.6 − 4.16% 
Tax jump 3 (01Apr2015) − 157.8 107 − 6.2 − 4.63% 
Total − 766.4  − 34.1 − 22.47% 
Panel B: coal plants 
Tax jump 1 (01Apr2013) − 1003.0 57 − 20.9 − 15.36% 
Tax jump 2 (01Apr2014) − 677.1 41 − 10.1 − 10.37% 
Tax jump 3 (01Apr2015) − 682.7 39 − 9.7 − 10.46% 
Total − 2362.8  − 40.7 − 36.18% 
Panel C: gas plants 
Tax jump 1 (01Apr2013) − 53.6 74 − 1.4 − 5.36% 
Tax jump 2 (01Apr2014) 180.6 68 4.5 18.08% 
Tax jump 3 (01Apr2015) 143.2 68 3.6 14.33% 
Total 270.3  6.6 27.05% 

Notes: ATE = average treatment effect. Aggregate ATE = ATE per plant per hour • # plants • 365 days. Average emissions per plant per day during period before 1st tax 
jump (01Apr2012 − 31Mar2013): all coal and gas plants = 3411 MtCO2, coal plants = 6530 MtCO2, gas plants = 999 MtCO2. 
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MtCO2). Gas, which is associated with less than half the carbon emis
sions of coal, became more economical than coal after the tax increase in 
2014. While imports mainly filled the electricity production gap from 
coal after the first carbon tax jump, gas in addition helped to fill the gap 
after the second and third jumps. This has led to an increase in gas-based 
emissions by 5.0 MtCO2. Moreover, electricity demand gradually 
declined and renewables feed-in gradually increased over time, helping 
to establish system stability. Looking at the plant-specific estimates, we 
find that inefficient (highly pollutive, outdated) coal plants react most 
significantly to the carbon tax. We also find that less efficient gas plants 
reduce their output, while the majority of gas plants is relatively carbon 
efficient and thus increases output. Robustness tests concerning main 
threats to our identification (e.g. anticipation effects, or discontinuously 
changing control variables) support our main results. 

In terms of external validity, our estimates show that it is possible to 
achieve a significant decline in emissions from the power sector by 
means of a carbon tax, but only if the tax is high enough to shift power 
stations' marginal costs so that less emissive gas turbines become mar
ginal and push coal turbines out of the market. Emissions abatement also 
depends on the scope of the fuel-switching potential, i.e. how much coal- 
fired generation capacity can be replaced by gas-fired generation ca
pacity. A study by Delarue et al. (2008) suggests that there is a signifi
cant abatement potential from a coal-to-gas switch across European 
countries. Moreover, as it its essentially the relative marginal costs of 
coal- and gas-fired power stations, which determine their position in the 
merit order, fuel prices play a major role as well. In the U.S., a decline in 
the price of natural gas due to the shale-gas revolution has induced a fuel 
switch between coal and gas and led to a significant decline in CO2 
emissions (Cullen and Mansur, 2017; Fell and Kaffine, 2018). Although a 
fuel switch may help reduce emissions in Europe, the U.S., and else
where, a full decarbonization of the power sector may only be possible 

by eventually pushing out any form of fossil-based electricity genera
tion. This may only happen if other carbon-free supply technologies can 
be deployed, which depends on their resource availability, flexibility 
measures (e.g. energy storage, network expansion, demand flexibility), 
and energy efficiency measures. 

Unfortunately, within the EU ETS, a unilateral environmental policy, 
such as the CPS, may induce the waterbed effect (Appun, 2019; Perino, 
2018; Rosendahl, 2019). It is argued that emissions saved in one country 
that is covered by the ETS results in a release of emissions in an equal 
amount in another country as long as the emissions cap stays unchanged. 
Another, more direct for of carbon leakage created by the CPS may be 
via electricity imports that may have caused emissions elsewhere 
(depending on the available interconnector capacity and supply struc
tures in exporting markets; see also Guo et al., 2019). Nevertheless, our 
paper is reassuring that even a moderate carbon tax can indeed lead to 
pronounced emissions abatement at the national scale and may also 
serve as a viable policy to reduce emissions at a larger scale if properly 
coordinated with other countries (to avoid the waterbed effect and deal 
properly with trade-induced emissions abroad). 
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Fig. 7. Developments of renewable energies and electricity demand. 
Notes: RES stands for electricity in-feed from wind and solar power. The discontinuous jumps in (a) and (b) are statistically insignificant. 
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Appendix A. Appendix

Fig. A1. British power sector emissions per day (1000 tCO2).   

Table A1 
Sample statistics.  

Variable Obs. Mean StD Min Max 

01Apr2012 − 31Mar2013 
Emissions: all thermal plants (tCO2)a 1,161,356 142.12 202.90 − 1.27 639.31 
Emissions: gas plants (tCO2)a 654,900 41.62 67.59 − 1.27 382.00 
Emissions: coal plants (tCO2)a 506,456 272.07 241.98 0.00 639.31 
Renewable energy feed-in (MWh)b 1,161,356 1596.11 1200.63 8.00 5284.00 
Demand (MWh)b 1,161,356 36,798.64 7214.50 21,385.00 56,678.00 
01Apr2013 − 31Mar2014 
Emissions: all thermal plants (tCO2)a 1,160,159 120.89 193.84 − 0.68 639.31 
Emissions: gas plants (tCO2)a 654,225 36.73 66.05 − 0.68 382.00 
Emissions: coal plants (tCO2)a 505,934 229.72 243.96 0.00 639.31 
Renewable energy feed-in (MWh)b 1,160,159 2427.28 1546.15 22.00 6203.00 
Demand (MWh)b 1,160,159 35,474.77 6758.38 20,892.00 52,793.00 
01Apr2014 − 31Mar2015 
Emissions: all thermal plants (tCO2)a 1,164,016 100.95 176.77 0.00 639.31 
Emissions: gas plants (tCO2)a 656,400 43.12 67.59 0.00 283.37 
Emissions: coal plants (tCO2)a 507,616 175.72 236.29 0.00 639.31 
Renewable energy feed-in (MWh)b 1,164,016 2402.83 1697.89 0.00 6742.00 
Demand (MWh)b 1,163,617 34,341.45 6773.71 19,777.00 54,923.00 
01Apr2015 − 31Mar2016 
Emissions: all thermal plants (tCO2)a 1,164,681 79.78 153.44 − 0.17 639.31 
Emissions: gas plants (tCO2)a 656,775 46.05 68.65 − 0.17 382.00 
Emissions: coal plants (tCO2)a 507,906 123.40 211.00 0.00 639.31 
Renewable energy feed-in (MWh)b 1,164,681 2545.06 1572.01 0.00 6254.00 
Demand (MWh)b 1,164,681 32,554.37 6445.54 17,867.00 53,780.00  
a Variation per plant per hour. b Time-series variation (identical per plant).  

Table A2 
Average treatment effects (tCO2 per plant per hour).   

Coal & gas plants Coal plants Gas plants  

Jump 2013 Jump 2014 Jump 2015 Jump 2013 Jump 2014 Jump 2015 Jump 2013 Jump 2014 Jump 2015 

Treat − 16.51 − 10.71 − 10.03 − 36.48 − 35.77 − 36.73 − 1.119 4.394 5.284  
(1.226) (1.294) (1.351) (2.651) (3.051) (3.170) (0.662) (0.706) (0.652) 

RES − 0.00385 − 0.00457 − 0.00541 − 0.00523 − 0.00765 − 0.0113 − 0.00279 − 0.00272 − 0.00202  
(0.000219) (0.000241) (0.000237) (0.000471) (0.000576) (0.000578) (0.000119) (0.000124) (0.000124) 

RES2 − 1.81e-07 − 2.18e-07 − 1.05e-07 − 1.57e-07 − 1.80e-07 3.67e-07 − 1.99e-07 − 2.42e-07 − 3.77e-07  
(3.97e-08) (3.94e-08) (3.97e-08) (8.52e-08) (9.45e-08) (9.67e-08) (2.19e-08) (2.03e-08) (2.06e-08) 
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Table A2 (continued )  

Coal & gas plants Coal plants Gas plants  

Jump 2013 Jump 2014 Jump 2015 Jump 2013 Jump 2014 Jump 2015 Jump 2013 Jump 2014 Jump 2015 

Demand 0.00525 0.00509 0.00320 0.0139 0.0159 0.00883 − 0.00145 − 0.00145 − 2.56e-05  
(0.000136) (0.000171) (0.000166) (0.000288) (0.000400) (0.000401) (7.48e-05) (8.70e-05) (8.67e-05) 

Demand2 − 2.55e-08 − 1.94e-08 1.29e-08 − 1.23e-07 − 1.44e-07 − 2.85e-08 4.96e-08 5.56e-08 3.66e-08  
(1.67e-09) (2.14e-09) (2.18e-09) (3.49e-09) (4.97e-09) (5.23e-09) (9.59e-10) (1.14e-09) (1.16e-09) 

Plant FE yes yes yes yes yes yes yes yes yes 
Hourly FE yes yes yes yes yes yes yes yes yes 
Dow FE yes yes yes yes yes yes yes yes yes 
Polyn. trend yes yes yes yes yes yes yes yes yes 
Obs. 2,286,605 1,904,448 1,873,142 994,935 716,352 682,734 1,291,670 1,188,096 1,190,408 
Nr. plants 131 109 107 57 41 39 74 68 68 
R2 0.591 0.552 0.473 0.453 0.363 0.384 0.390 0.404 0.417 

Notes: Plant FE indicate power plant-specific fixed effects. Hourly FE indicate fixed effects for each daily hour. Dow FE indicate day-of-week fixed effects. The 
regression includes a polynomial time trend of order six, which is also interacted with the treatment indicator to allow the trends to differ after the tax jumps. Robust 
standard errors in parentheses.  

Table A3 
Coal plant-specific effects.   

Tax jump 1 Tax jump 2 Tax jump 3  

Coef. Std. 
Err. 

p-val. Coef. Std. 
Err. 

p-val. Coef. Std. 
Err. 

p-val. 

Treat*υ1 − 562.43 3.317 0.000 − 482.08 3.709 0.000 − 263.85 4.001 0.000 
Treat*υ2 − 227.20 3.419 0.000 − 228.66 4.115 0.000 − 204.87 4.185 0.000 
Treat*υ3 − 214.67 3.369 0.000 − 228.26 4.285 0.000 − 201.41 4.029 0.000 
Treat*υ4 − 214.39 3.369 0.000 − 211.08 3.805 0.000 − 149.70 4.249 0.000 
Treat*υ5 − 209.98 3.800 0.000 − 171.02 3.969 0.000 − 149.69 3.939 0.000 
Treat*υ6 − 171.99 3.943 0.000 − 147.86 3.933 0.000 − 146.77 4.385 0.000 
Treat*υ7 − 130.01 3.347 0.000 − 146.21 4.151 0.000 − 136.11 4.368 0.000 
Treat*υ8 − 125.40 3.332 0.000 − 140.51 4.088 0.000 − 124.71 4.282 0.000 
Treat*υ9 − 123.76 3.279 0.000 − 119.81 4.333 0.000 − 123.56 4.453 0.000 
Treat*υ10 − 121.05 3.288 0.000 − 108.27 4.007 0.000 − 117.78 4.266 0.000 
Treat*υ11 − 121.03 4.076 0.000 − 96.17 3.746 0.000 − 117.10 4.211 0.000 
Treat*υ12 − 120.77 3.769 0.000 − 95.49 3.721 0.000 − 98.86 4.146 0.000 
Treat*υ13 − 118.69 3.297 0.000 − 79.81 4.352 0.000 − 73.25 4.295 0.000 
Treat*υ14 − 118.49 3.913 0.000 − 79.38 4.040 0.000 − 69.61 4.388 0.000 
Treat*υ15 − 116.73 3.762 0.000 − 78.06 4.007 0.000 − 68.87 4.090 0.000 
Treat*υ16 − 99.43 3.625 0.000 − 48.66 3.983 0.000 − 65.10 4.405 0.000 
Treat*υ17 − 93.21 3.707 0.000 − 47.67 3.861 0.000 − 61.63 3.674 0.000 
Treat*υ18 − 93.08 4.444 0.000 − 47.50 3.722 0.000 − 61.40 4.362 0.000 
Treat*υ19 − 84.41 4.282 0.000 − 17.08 4.390 0.000 − 58.15 4.251 0.000 
Treat*υ20 − 82.57 3.570 0.000 − 13.11 4.007 0.001 − 44.70 4.112 0.000 
Treat*υ21 − 73.02 3.942 0.000 − 8.78 4.464 0.049 − 44.44 4.101 0.000 
Treat*υ22 − 70.37 2.867 0.000 − 8.44 3.199 0.008 − 43.10 4.752 0.000 
Treat*υ23 − 65.30 3.914 0.000 − 3.45 3.204 0.282 − 22.65 4.732 0.000 
Treat*υ24 − 61.47 3.713 0.000 − 3.34 4.199 0.427 − 13.25 4.176 0.002 
Treat*υ25 − 59.38 3.720 0.000 − 0.66 4.176 0.874 6.55 3.778 0.083 
Treat*υ26 − 50.72 2.721 0.000 7.38 4.005 0.065 22.79 4.114 0.000 
Treat*υ27 − 45.76 2.712 0.000 15.14 4.030 0.000 26.56 4.208 0.000 
Treat*υ28 − 35.00 2.714 0.000 17.01 3.604 0.000 33.60 3.403 0.000 
Treat*υ29 − 33.08 3.612 0.000 19.55 4.349 0.000 40.97 4.649 0.000 
Treat*υ30 − 32.97 2.672 0.000 25.05 4.101 0.000 45.37 3.362 0.000 
Treat*υ31 − 30.41 2.605 0.000 29.91 4.176 0.000 49.17 4.375 0.000 
Treat*υ32 − 21.61 3.665 0.000 40.61 3.193 0.000 51.34 4.694 0.000 
Treat*υ33 − 19.33 4.143 0.000 44.61 4.212 0.000 57.85 3.351 0.000 
Treat*υ34 − 14.98 2.729 0.000 48.48 4.706 0.000 65.61 3.390 0.000 
Treat*υ35 − 14.71 2.722 0.000 57.51 4.084 0.000 77.40 4.270 0.000 
Treat*υ36 − 9.81 3.500 0.005 74.54 4.318 0.000 112.18 4.144 0.000 
Treat*υ37 − 4.81 3.335 0.150 120.86 3.993 0.000 119.55 4.677 0.000 
Treat*υ38 − 1.36 3.465 0.694 122.67 4.654 0.000 124.61 4.398 0.000 
Treat*υ39 14.38 2.611 0.000 162.47 4.459 0.000 194.71 4.447 0.000 
Treat*υ40 16.62 2.628 0.000 165.19 4.335 0.000    
Treat*υ41 18.98 4.015 0.000 193.81 4.123 0.000    
Treat*υ42 30.31 3.260 0.000       
Treat*υ43 36.00 3.785 0.000       
Treat*υ44 37.62 3.812 0.000       
Treat*υ45 43.81 3.892 0.000       
Treat*υ46 52.03 3.625 0.000       
Treat*υ47 52.54 4.359 0.000       
Treat*υ48 56.89 3.493 0.000       
Treat*υ49 68.16 3.638 0.000       
Treat*υ50 75.19 3.949 0.000       
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Table A3 (continued )  

Tax jump 1 Tax jump 2 Tax jump 3  

Coef. Std. 
Err. 

p-val. Coef. Std. 
Err. 

p-val. Coef. Std. 
Err. 

p-val. 

Treat*υ51 94.74 3.417 0.000       
Treat*υ52 115.92 4.215 0.000       
Treat*υ53 145.26 3.774 0.000       
Treat*υ54 152.16 4.060 0.000       
Treat*υ55 217.22 3.670 0.000       
Treat*υ56 225.13 3.929 0.000       
Treat*υ57 260.91 3.897 0.000         

Table A3 continued. Coal plant-specific effects 

Controls yes yes yes 

Plant FE yes yes yes 
Hourly FE yes yes yes 
Dow FE yes yes yes 
Polyn. trend yes yes yes 
Obs. 994,935 716,352 682,734 

Notes: Each regression includes RES, RES2, demand, and demand2 as control variables. Plant 
FE indicate power plant-specific fixed effects. Hourly FE indicate fixed effects for each daily 
hour. Dow FE indicate day-of-week fixed effects. The regression includes a polynomial time 
trend of order six, which is also interacted with the treatment indicator to allow the trends to 
differ after the tax jumps.  

Table A4 
Gas plant-specific effects.   

Tax jump 1 Tax jump 2 Tax jump 3  

Coef. Std. Err. p-val. Coef. Std. Err. p-val. Coef. Std. Err. p-val. 

Treat*υ1 − 145.63 1.094 0.000 − 162.02 1.740 0.000 − 49.48 1.457 0.000 
Treat*υ2 − 78.44 1.348 0.000 − 27.62 1.152 0.000 − 49.00 1.221 0.000 
Treat*υ3 − 66.39 1.495 0.000 − 26.73 1.004 0.000 − 41.46 0.946 0.000 
Treat*υ4 − 29.33 0.997 0.000 − 17.33 0.962 0.000 − 38.74 0.993 0.000 
Treat*υ5 − 24.50 0.994 0.000 − 17.33 0.931 0.000 − 24.71 1.576 0.000 
Treat*υ6 − 22.28 1.239 0.000 − 13.11 0.963 0.000 − 22.84 1.729 0.000 
Treat*υ7 − 17.55 0.875 0.000 − 9.05 0.861 0.000 − 17.35 1.020 0.000 
Treat*υ8 − 14.95 0.999 0.000 − 8.54 0.840 0.000 − 16.94 1.096 0.000 
Treat*υ9 − 14.81 1.090 0.000 − 8.50 1.666 0.000 − 14.88 1.049 0.000 
Treat*υ10 − 13.77 0.721 0.000 − 5.95 0.772 0.000 − 13.22 1.170 0.000 
Treat*υ11 − 11.59 1.694 0.000 − 5.43 1.040 0.000 − 12.15 0.849 0.000 
Treat*υ12 − 10.76 1.499 0.000 − 5.20 0.953 0.000 − 10.02 0.821 0.000 
Treat*υ13 − 10.49 0.935 0.000 − 4.29 0.880 0.000 − 8.53 1.281 0.000 
Treat*υ14 − 10.41 1.061 0.000 − 2.82 0.752 0.000 − 7.35 0.994 0.000 
Treat*υ15 − 10.26 0.706 0.000 − 2.82 0.752 0.000 − 6.47 0.899 0.000 
Treat*υ16 − 10.26 0.706 0.000 − 2.81 0.754 0.000 − 4.54 0.805 0.000 
Treat*υ17 − 10.06 1.013 0.000 − 2.78 0.753 0.000 − 4.52 0.886 0.000 
Treat*υ18 − 8.92 1.088 0.000 − 2.72 0.752 0.000 − 3.92 0.754 0.000 
Treat*υ19 − 8.40 1.002 0.000 − 2.72 0.752 0.000 − 3.80 0.769 0.000 
Treat*υ20 − 8.34 0.719 0.000 − 2.69 0.856 0.002 − 2.77 0.977 0.005 
Treat*υ21 − 7.59 0.826 0.000 − 2.66 0.752 0.000 − 2.25 0.879 0.010 
Treat*υ22 − 7.41 0.917 0.000 − 2.66 0.752 0.000 − 1.68 0.923 0.069 
Treat*υ23 − 6.95 0.942 0.000 − 2.66 0.752 0.000 − 1.18 1.003 0.241 
Treat*υ24 − 6.67 1.001 0.000 − 2.66 0.752 0.000 0.33 0.733 0.657 
Treat*υ25 − 6.23 0.932 0.000 − 2.55 0.753 0.001 0.52 1.218 0.671 
Treat*υ26 − 6.16 1.009 0.000 − 2.28 0.867 0.008 1.92 0.725 0.008 
Treat*υ27 − 5.38 0.929 0.000 − 1.58 1.263 0.211 1.93 0.789 0.015 
Treat*υ28 − 4.97 0.854 0.000 − 1.21 0.762 0.111 2.01 0.724 0.006 
Treat*υ29 − 4.68 0.797 0.000 − 0.66 0.798 0.406 2.03 0.854 0.017 
Treat*υ30 − 4.50 0.881 0.000 0.22 0.952 0.819 2.05 0.725 0.005 
Treat*υ31 − 3.83 0.874 0.000 2.47 0.826 0.003 2.05 0.725 0.005 
Treat*υ32 − 3.14 0.924 0.001 2.68 0.783 0.001 2.05 0.725 0.005 
Treat*υ33 − 2.51 1.019 0.014 3.22 0.940 0.001 2.08 0.725 0.004 
Treat*υ34 − 1.19 0.982 0.225 3.33 0.927 0.000 2.09 0.724 0.004 
Treat*υ35 0.13 0.739 0.865 3.84 0.813 0.000 2.25 0.723 0.002 
Treat*υ36 0.77 0.719 0.284 3.99 0.974 0.000 2.25 0.723 0.002 
Treat*υ37 0.86 1.670 0.607 4.64 0.860 0.000 2.57 0.726 0.000 
Treat*υ38 0.87 1.054 0.412 4.73 0.833 0.000 2.79 0.764 0.000 
Treat*υ39 1.85 0.828 0.026 4.80 1.049 0.000 6.99 0.833 0.000 
Treat*υ40 3.02 0.721 0.000 5.72 0.990 0.000 7.05 1.064 0.000 
Treat*υ41 3.24 0.717 0.000 6.43 1.484 0.000 7.19 0.745 0.000 
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Table A4 (continued )  

Tax jump 1 Tax jump 2 Tax jump 3  

Coef. Std. Err. p-val. Coef. Std. Err. p-val. Coef. Std. Err. p-val. 

Treat*υ42 3.32 0.719 0.000 6.57 1.047 0.000 7.43 1.016 0.000 
Treat*υ43 3.54 0.712 0.000 7.11 0.904 0.000 7.94 0.886 0.000 
Treat*υ44 3.66 0.712 0.000 7.74 1.023 0.000 8.17 0.965 0.000 
Treat*υ45 3.69 1.047 0.000 8.29 0.990 0.000 8.41 0.970 0.000 
Treat*υ46 3.78 0.712 0.000 11.10 1.082 0.000 8.84 0.979 0.000 
Treat*υ47 3.82 0.712 0.000 11.35 0.975 0.000 8.84 0.991 0.000 
Treat*υ48 3.83 0.712 0.000 12.24 1.081 0.000 8.93 1.709 0.000 
Treat*υ49 3.84 0.712 0.000 12.99 0.927 0.000 14.40 0.872 0.000 
Treat*υ50 3.84 0.712 0.000 14.11 1.670 0.000 15.62 0.724 0.000 
Treat*υ51 3.84 0.712 0.000 14.59 0.992 0.000 15.62 0.724 0.000 
Treat*υ52 3.88 0.712 0.000 15.70 1.033 0.000 16.66 1.053 0.000 
Treat*υ53 3.88 0.712 0.000 17.38 0.915 0.000 18.00 1.450 0.000 
Treat*υ54 3.98 0.711 0.000 17.84 1.054 0.000 19.01 0.761 0.000 
Treat*υ55 4.02 0.712 0.000 17.99 1.146 0.000 21.10 1.011 0.000 
Treat*υ56 5.16 0.856 0.000 19.72 0.743 0.000 23.17 1.698 0.000 
Treat*υ57 5.35 0.793 0.000 19.72 0.743 0.000 23.67 1.019 0.000 
Treat*υ58 5.42 0.909 0.000 25.30 0.764 0.000 26.49 1.196 0.000 
Treat*υ59 5.79 0.816 0.000 27.60 1.012 0.000 30.72 0.972 0.000 
Treat*υ60 7.16 0.820 0.000 29.31 1.045 0.000 31.80 0.871 0.000 
Treat*υ61 8.99 0.744 0.000 29.88 1.336 0.000 32.31 0.882 0.000 
Treat*υ62 9.66 0.721 0.000 30.69 1.525 0.000 38.47 0.994 0.000 
Treat*υ63 11.70 1.033 0.000 34.90 1.086 0.000 40.18 1.597 0.000 
Treat*υ64 14.63 1.748 0.000 35.67 1.590 0.000 42.72 1.208 0.000 
Treat*υ65 15.22 1.400 0.000 38.24 1.679 0.000 43.54 1.357 0.000 
Treat*υ66 19.26 0.966 0.000 39.84 1.001 0.000 45.81 0.956 0.000 
Treat*υ67 25.73 1.051 0.000 43.43 1.059 0.000 53.46 0.915 0.000 
Treat*υ68 28.03 1.003 0.000 52.83 1.572 0.000 55.62 0.979 0.000 
Treat*υ69 29.35 0.951 0.000       
Treat*υ70 30.98 0.839 0.000       
Treat*υ71 41.74 1.471 0.000       
Treat*υ72 46.03 2.194 0.000       
Treat*υ73 54.60 0.908 0.000       
Treat*υ74 87.05 1.157 0.000       
Controls yes   yes   yes   
Plant FE yes   yes   yes   
Hourly FE yes   yes   yes   
Dow FE yes   yes   yes   
Polyn. trend yes   yes   yes   
Obs. 994,935   716,352   682,734   

Notes: Each regression includes RES, RES2, demand, and demand2 as control variables. Plant FE indicate power plant-specific fixed effects. Hourly FE indicate fixed 
effects for each daily hour. Dow FE indicate day-of-week fixed effects. The regression includes a polynomial time trend of order six, which is also interacted with the 
treatment indicator to allow the trends to differ after the tax jumps.  

Table A5 
Heterogeneous effects with respect to ratio of emission to efficiency factor.   

Tax jump 1 Tax jump 2 Tax jump 3 Pooled 

Ratio emission to efficiency factor − 53.31 − 66.03 − 71.29 − 63.07  

(23.75) (24.19) (19.44) (13.09) 
Capacity − 0.02 − 0.02 − 0.02 0.02  

(0.04) (0.04) (0.03) (0.02) 
Constant 27.08 37.03 39.24 34.04  

(23.36) (23.55) (18.54) (2.67) 
Obs. 131 109 107 347 

Notes: The dependent variable is the estimated plant level ATE. “Ratio emission to efficiency factor” is the ratio of the emission to the efficiency 
factor at the plant level. The average ratio is 0.59. Capacity is nameplate capacity of the plant. Robust standard errors in parentheses.  

Table A6 
Daily frequency: Average treatment effects (tCO2 per plant per day).   

Coal & gas plants Coal plants Gas plants  

Jump 2013 Jump 2014 Jump 2015 Jump 2013 Jump 2014 Jump 2015 Jump 2013 Jump 2014 Jump 2015 

Treat − 466.6 − 142.0 − 157.8 − 1003 − 677.1 − 682.7 − 53.55 180.6 143.2  
(136.4) (141.0) (147.4) (297.7) (335.0) (340.9) (64.35) (68.81) (64.65) 

RES − 0.00401 − 0.00426 − 0.00492 − 0.00506 − 0.00616 − 0.0103 − 0.00320 − 0.00311 − 0.00184  
(0.00110) (0.00122) (0.00118) (0.00238) (0.00294) (0.00288) (0.000504) (0.000537) (0.000564) 

RES2 − 5.28e-09 − 1.05e-08 − 7.90e-09 − 4.87e-09 − 1.85e-08 9.46e-09 − 5.59e-09 − 5.60e-09 − 1.78e-08  
(8.35e-09) (8.43e-09) (8.43e-09) (1.82e-08) (2.04e-08) (2.06e-08) (3.92e-09) (3.68e-09) (3.92e-09) 
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Table A6 (continued )  

Coal & gas plants Coal plants Gas plants  

Jump 2013 Jump 2014 Jump 2015 Jump 2013 Jump 2014 Jump 2015 Jump 2013 Jump 2014 Jump 2015 

Demand 0.00363 0.00414 0.00412 0.00875 0.0120 0.0112 − 0.000314 − 0.000600 9.31e-05  
(0.000539) (0.000786) (0.00153) (0.000920) (0.00128) (0.00367) (0.000205) (0.000283) (0.000686) 

Demand2 3.54e− 10 3.48e-10 4.82e-10 -1.43e-09 − 2.95e-09 − 1.63e-09 1.73e-09 2.34e-09 1.69e-09  
(3.40e-10) (4.95e-10) (9.41e-10) (6.22e-10) (9.06e-10) (2.24e-09) (1.44e-10) (1.90e-10) (4.20e-10) 

Plant FE yes yes yes yes yes yes yes yes yes 
Dow FE yes yes yes yes yes yes yes yes yes 
Polyn. trend yes yes yes yes yes yes yes yes yes 
Obs. 95,630 79,570 78,217 41,610 29,930 28,509 54,020 49,640 49,708 
Nr. plants 131 109 107 57 41 39 74 68 68 
R2 0.632 0.598 0.526 0.489 0.399 0.430 0.478 0.491 0.495 

Notes: Plant FE indicate power plant-specific fixed effects. Dow FE indicate day-of-week fixed effects. The regression includes a polynomial time trend of order six, 
which is also interacted with the treatment indicator to allow the trends to differ after the tax jumps. Robust standard errors in parentheses. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2023.106655. 
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