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Setup
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Setup
Y: The quantity of interest or response:

§ Typically real-valued, but could also be multivariate, categorical etc.
§ Examples: Claim sizes, number of claims, temperature, precipitation,

wind speed, demand for a product, GDP growth, inflation, loss of a
company

X: Explanatory variables, regressors, features:
§ From a possibly high dimensional feature space X .
§ Can contain metrical variables, categorical etc.
§ Can be exogenous variables (cross-sectional), but also past

observations of Y (time series setup)

Learning We want to exploit the information in X to describe Y as
accurately as possible.; How to fit a model?

Prediction We want to exploit the information in X to predict unseen Y
as accurately as possible.; How to assess the accuracy?
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Define your goal!

Usually, X does not fully describe Y: There is no deterministic
function g such that Y = g(X).

The remaining uncertainty of Y given X can be described in terms of
the conditional distribution

FY|X
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Define your goal!
Probabilistic predictions: Try to learn the full conditional distribution
and come up with probabilistic forecasts pFY|X.

§ Very informative approach.
§ Often hard to implement.
§ Can be difficult to communicate.

Point predictions: Summarise the conditional distribution with a
functional of the conditional distribution

T(Y | X) := T(FY|X)

Note: The existence and σ(X)-measurability of T(Y | X) has been
established in F. & Holzmann (EJS, 2022).
Examples:

§ mean, median, mode
§ quantiles, expectiles
§ Risk measures: Value at Risk, Expected Shortfall

Come up with point forecasts pT(Y | X).
§ Loss of information
§ Easier to implement
§ Easier to communicate.
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Loss functions in statistical learning
& forecast comparison
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Action domain and model choice
Let F be a convex class of distributions such that FY|X P F .
Call the space where the chosen target functional maps to action
domain A. T : F Ñ A.
Examples:

§ A = R for the mean / quantile or [0,8) for the mean / quantile of a
positive Y

§ A = Rk for mean of a multivariate observation, different quantiles of a
real-valued observation

§ A finite for the mode of a categorical observation
§ A Ď P(Rk) for prediction sets or systemic risk measures.
§ A = F , a class of probability distributions or densities for probabilistic

forecasts (then T is the identity functional).

Consider a model class M of models m : X Ñ A.
Examples:

§ (Generalised) Linear Models
§ Neural nets
§ Isotonic regression functions

Convexity of F ensures that FY,FY|m(X) P F for all m P M.
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Consistent loss functions and elicitability
Definition 1 (Consistency)
A loss function is a map

L : A ˆ R Ñ R.

Sometimes, additional assumptions are imposed such as continuity (in the
first argument), positivity etc.
It is F-consistent for a functional T if

EY„F
[
L(T(F),Y)

]
ď EY„F

[
L(a,Y)

]
for all a P A, F P F .

L is strictly F-consistent if equality arises only if a = T(F).

Definition 2 (Elicitability)
A functional T is elicitable on F if there is a strictly F-consistent loss
function for it.

Alternative name for loss functions: Scoring functions
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First examples of elicitable functionals

The mean is elicitable on the class of square integrable distributions. A
strictly consistent loss function is given via the squared loss

L(a, y) = (a ´ y)2.

The α-quantile is elicitable on the class of integrable distributions which
are strictly increasing. A strictly consistent loss function is given via the
pinball loss / asymmetric piecewise linear loss

L(a, y) = (1ty ď au ´ α)(a ´ y).
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Learning via loss minimisation (M-estimation)
Consider the statistical risk

R(m) = E
[
L
(
m(X),Y)

)]
= E

[
E
[
L
(
m(X),Y)

)
| X

]]
Bayes rule is given by

m˚ P arg min
mPM

R(m).

If the true regression function x ÞÑ T(Y | X = x) is in M and if L is
F-consistent for T, we get

E
[
L
(
T(Y | X),Y)

)
| X

]
ď E

[
L
(
m(X),Y)

)
| X

]
.

Therefore, T(Y | X = ¨) is a Bayes rule.
Due to Dimitriadis, F., Ziegel (Biometrika, 2023), the (strict)
consistency of L is also necessary for T(Y | X = ¨) to be the only
Bayes act (under certain richness conditions).
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Learning via loss minimisation (M-estimation)

Let Dtrain = t(xi, yi), i = 1, . . . , nu be a training sample. Define the
empirical risk

R(m;Dtrain) =
1

n
ÿ

(xi,yi)PDtrain

L(m(xi), yi)

« E
[
L
(
m(X),Y)

)]
= R(m).

M-estimator pm is an empirical risk minimiser

pm P arg min
mPM

R(m;Dtrain)
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Pitfall of overfitting

Estimator pm depends on training sample Dtrain:
§ Prone to estimation error
§ Different training samples lead to different estimates.
§ Danger that pm learns the noisy pattern of the sample at hand and not

the structure of the distribution.
§ In-sample performance R(pm;Dtrain) can be a bad estimate for the

actual risk R(pm).
§ ; pitfall of overfitting.
§ This problem gets bigger

‹ the more complex a model is;
‹ the smaller (less representative) the trainings sample is.
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Pitfall of overfitting
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Mitigating overfitting
There are two main strategies:

1. Fitting: Introduce a penalty term Ω, accounting for the model
complexity:

pm = arg min
mPM

R(m;Dtrain) + λΩ(m).

Examples for Ω:
§ Number of parameters ; AIC and BIC
§ Norms of the parameter ; ridge and lasso regression
§ Number of optimisation steps when fitting a neural net

2. Validation: Monitor the out-of-sample risk on an (ideally)
independent and identically distributed validation set
Dvalid = t(xi, yi), i = 1, . . . , lu via

R(pm;Dvalid)

§ Better approximation of the statistical risk.
§ Can be made more efficient with cross-validation.
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Model agnostic forecast comparison
Suppose the target functional T is fixed (could also be probabilistic).
We have different methods of producing predictions, but we are
agnostic about how they have been produced.; We adhere to the weak prequential principle (Dawid & Vovk, 1999).
Example for two different forecasters: We have the
prediction–observation sequence

(A(1)
i ,A(2)

i ,Yi) i = 1, . . . , n
Ranking in terms of the empirical loss difference

1

n

n
ÿ

i=1

L
(
A(1)

i ,Yi
)

´ L
(
A(2)

i ,Yi
)

§ Forecast method 1 is deemed better than 2 if this is negative.
§ Tests for equal predictive accuracy E[L(A(1),Y)] = E[L(A(2),Y)] and

forecast dominance E[L(A(1),Y)] ě E[L(A(2),Y)] can be assessed via
Diebold–Mariano tests (amounting to t-tests).

To honour truthful forecasting, L should be (strictly) consistent for T!
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The Elicitation Problem
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The Elicitation Problem
Fix some functional T : F Ñ A.
(a) Is T elicitable?
(b) What is the class of (strictly) consistent loss functions for T ?
(c) What is a particularly good choice of a loss function?
(d) What to do if T is not elicitable?

T L(x, y)
mean (x ´ y)2

median |x ´ y|

τ -expectile |1ty ď xu ´ τ |(x ´ y)2

α-quantile |1ty ď xu ´ α| |x ´ y|

variance ˆ

Expected Shortfall ˆ

(mean, variance) ✓
(Value at Risk, Expected Shortfall) ✓

identity (probabilistic forecast) L(F, y) = ´ log(f (y))
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(a) One-dimensional functionals

Theorem 3 (Convex level sets, Osband, 1985)
Let T : F Ñ A be an elicitable functional. Let F0,F1 P F and
Fλ = (1 ´ λ)F0 + λF1 P F for some λ P (0, 1). Then

T(F0) = T(F1) ùñ T(Fλ) = T(F0)

Proof: Let t = T(F0) = T(F1) and x ‰ t. Then, due to the linearity of
the expectation in the measure,

EY„Fλ
[L(t,Y)] = (1 ´ λ)EY„F0 [L(t,Y)] + λEY„F1 [L(t,Y)]

ă (1 ´ λ)EY„F0 [L(x,Y)] + λEY„F1 [L(x,Y)]
= EY„Fλ

[L(x,Y)].
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(a) One-dimensional functionals

Theorem 4 (Convex level sets, Osband, 1985)
Let T : F Ñ A be an elicitable functional. Let F0,F1 P F and
Fλ = (1 ´ λ)F0 + λF1 P F for some λ P (0, 1). Then

T(F0) = T(F1) ùñ T(Fλ) = T(F0)

Remarks:
This shows that the variance or ES are generally not elicitable.

Var(δx) = Var(δy) = 0, Var
(
λδx + (1 ´ λ)δy

)
= λ(1 ´ λ)(x ´ y)2 .

Steinwart et al. (2014) showed that for A = R and under some
continuity assumptions on T, CxLS are also sufficient for elicitability.
This argument is independent of the dimension of T.
For k ą 1, CxLS are generally not sufficient, e.g., (VaRα,CoVaRα|β).
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The wondrous tale about the mode

Tobias Fissler (ETH Zurich) Theory of elicitability 30 June 2023 20 / 39



The wondrous tale about the mode
The mode is the argmax of the counting / Lebesgue density.
The mode functional has CxLS.
On classes of discrete distributions only (say on N), it is elicitable
with the zero-one loss:

L(x, y) = 1tx ‰ yu

What about absolutely continuous distributions? Clearly, the zero-one
loss is constant almost surely. But are there other candidates?

Theorem 5 (Heinrich-Mertsching and F. (Biometrika, 2022))
The mode is not elicitable on F0, the class of continuous and strongly
unimodal densities on R.
(And hence it fails to be elicitable on any superclass F of F0.)

This result substantially strengthens the result of Heinrich (2014) which
establishes the non-elicitability on the class containing all absolutely
continuous distributions on R.
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The wondrous tale about the mode (continued)
Proof:

Key observation: The mode fails to be continuous:
For any a ă b there are sequences of densities fn, gn P F0

§ mode(fn) =: x1 ‰ x2 := mode(gn) for all n P N, x1, x2 P [a, b];
§ fn and gn converge pointwise to the uniform distribution on [a, b]

(which is not contained in F0).

If a strictly F0-consistent loss function L existed, this would imply that
ż b

a
L(x1, y)dy =

ż b

a
L(x2, y)dy (1)

Since (1) holds for all a ă b, the Radon–Nikodym theorem implies
that

L(x1, y) = L(x2, y) for almost all y. (2)

(2) shows that L cannot be strictly F0-consistent.
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Range Value at Risk –
a linear combination of Bayes risks
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What to do if T is not elicitable?
A lot of (relevant) functionals are not elicitable: Variance, Expected
Shortfall (ES), but also Range Value at Risk (RVaR).

ESα(Y) =
1

α

ż 1

α
VaRγ(Y)dγ

(‹)
= E

[
Y | VaRα(Y) ď Y

]
RVaRα,β(Y) =

1

β ´ α

ż β

α
VaRγ(Y)dγ

(‹)
= E

[
Y | VaRα(Y) ď Y ď VaRβ(Y)

]
RVaRα,β is an interpolation of ESα and VaRα.
It is robust, but not coherent.
Moreover, RVaRα,1´α is a trimmed mean.
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What to do if T is not elicitable?
Variance and ES can be written as the Bayes risk of a consistent loss
function.

Var(Y) = min
xPR

E
[
(x ´ Y)2

]
ESα(Y) = min

xPR
E
[ 1
α

Sα(x,Y)
]
, Sα(x, y) = (1ty ď xu ´ α)x ´ 1ty ď xuy

Theorem 6
Let T be elicitable with strictly consistent loss S. Then (T,T‹) is jointly
elicitable where

T‹(F) = min
xPA

EY„F
[
S(x,Y)

]
.

A strictly consistent loss for (T,T‹) is given by

L(x1, x2; y) = ϕ1(x2)
(
x2 ´ S(x1, y)

)
´ ϕ(x2) + LT(x1, y),

where ϕ is strictly convex, ϕ1 ă 0, and LT is a consistent loss for T.
Tobias Fissler (ETH Zurich) Theory of elicitability 30 June 2023 24 / 39



L(x1, x2; y) = ϕ1(x2)
(
x2 ´ S(x1, y)

)
´ ϕ(x2) + LT(x1, y),

Idea:
For fixed x2, the map

(x1, y) ÞÑ L(x1, x2; y) = ´ϕ1(x2)S(x1, y) + LT(x1, y) + κ(x2)

is strictly consistent for T, since ϕ1 ă 0.
For fixed x1, the map

(x2, y) ÞÑ L(x1, x2; y) = ϕ1(x2)
(
x2 ´ S(x1, y)

)
´ ϕ(x2) + . . .

is strictly consistent for F ÞÑ EY„F S(x1,Y), since ϕ is convex.

Corollary 7 (F and Ziegel (AoS, 2016))
The pairs (mean, variance) and (VaRα,ESα) are elicitable!
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Elicitability of RVaR
RVaR is the scaled difference of Bayes risks!

ESα(Y) =
1

β ´ α

(
min
xPR

E
[
Sα(x,Y)

]
´ min

xPR
E
[
Sβ(x,Y)

])
Theorem 8 (F and Ziegel (Stat. Risk Model., 2021))

L(x1, x2, x3; y) = (1ty ď x1u ´ α)(g1(x1) ´ g1(y)) (3)
+ (1ty ď x2u ´ β)(g2(x2) ´ g2(y))

+ ϕ1(x3)
(

x3 ´
1

β ´ α

(
Sα(x1, y) ´ Sβ(x2, y)

))
´ ϕ(x3)

is strictly consistent for (VaRα,VaRβ ,RVaRα,β) if
ϕ is strictly convex;
for all x3: x1 ÞÑ g1(x1) ´ x1ϕ1(x3)/(β ´ α) is strictly increasing;
for all x3: x2 ÞÑ g2(x2) + x2ϕ1(x3)/(β ´ α) is strictly increasing.

Any strictly consistent loss is essentially of the form (3).
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The dichotomy of the set-valued
elicitation world
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Set-valued functionals

The functional T maps to a subset of P(Rk).
Mode: mode(F) = argmaxxf(x)
Quantiles: qα(F) := tx P R | limtÒx F(t) ď α ď F(x)u
Prediction intervals: Any [a, b] s.t. F([a, b]) := F(b) ´ F(a´) ě α

Systemic risk measures: R(FY) = tk P Rd | ρ(Λ(Y + k)) ď 0u,
see Feinstein, Rudloff and Weber (2017)
Functionals of random sets: Climatology, reliability engineering,
medicine, econometrics; see Molchanov (2017); Molchanov and
Molinari (2018).
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Selective vs. exhaustive forecasts

Example of the α-quantile qα : R Ñ P(R)

qα(F) = tx P R | lim
tÒx

F(t) ď α ď F(x)u Ă R.

Choice of the action domain A:
Asel Ď R: The forecasts are points in R. There are multiple best

actions, namely each selection x P qα(F).; Selective forecasts
Aexh Ď P(R): The forecasts are subsets of R. There is a unique best

action namely to report the entire set B = qα(F).; Exhaustive forecasts
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Two modes of elicitability

Definition 9 (Elicitability)
(a) A functional T : F Ñ P(Asel) is selectively elicitable if there is a

selective loss function Lsel : Asel ˆ O Ñ R such that

EF[Lsel(t,Y)] ď EF[Lsel(x,Y)]

for all F P F , for all t P T(F), for all x P Asel and where equality
implies that x P T(F).

(b) A functional T : F Ñ Aexh is exhaustively elicitable if there is an
exhaustive loss function Lexh : Aexh ˆ O Ñ R such that

EF[Lexh(T(F),Y)] ď EF[Lexh(B,Y)]

for all F P F , for all B P Aexh and where equality implies that
B = T(F).
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Mutual exclusivity results

Theorem 10 (F., Frongillo, Hlavinová, Rudloff (EJS, 2021))
If there exist F,G P F such that H ‰ T(F0) Ĺ T(F1) and
(1 ´ λ)F0 + λF1 P F for all λ P (0, 1) then:

(i) If T is selectively elicitable, it is not exhaustively elicitable.
(ii) If T is exhaustively elicitable, it is not selectively elicitable.

Main idea for proofs:
Exploit “linearity” of the expected loss L̄(x,F) in its second argument and
use a refinement of the fact that convex level sets are necessary for
elicitability.
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Examples: Mode and Quantiles

If all F P Fcount have countable support, the mode is selectively
elicitable on Fcount with the loss

Lmode(x, y) = 1tx ‰ yu.

; The mode is generally not exhaustively elicitable.
The α-quantile is selectively elicitable with a strictly consistent loss

Lα(x, y) = |1ty ď xu ´ α||x ´ y|.

; The α-quantile is generally not exhaustively elicitable.
One can also show that the lower quantile (or any other selection of
it) is in general not elicitable!
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Examples: Prediction intervals and systemic risk measures

The class of α-prediction intervals is exhaustively elicitable.

The class of shortest α-prediction interval is neither selectively nor
exhaustively elicitable.

Systemic risk measures of the form
R(FY) = tk P Rd | ρ(Λ(Y + k)) ď 0u are exhaustively elicitable, if ρ is
elicitable. (F, Hlavinová, Rudloff (Fin. Stoch., 2021)).
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Closed Random Sets
Let (Ω,F,P) be a non-atomic probability space.
A closed random set Y is a map from Ω into the collection U of
closed sets in Rd (or some general separable Banach space).
It is measurable if for all compact sets K Ď Rd

tω | Y(ω) X K ‰ Hu P F.

See Molchanov (2017) for details.
Examples:

§ region of a blackout in a country
§ region affected by a flood, avalanche, disease
§ tumorous tissue in the human body

There are interesting set-valued functionals of random sets:
§ Vorob’ev quantiles
§ Vorob’ev expectation
§ Selection expectation (« Minkowski average)
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Vorob’ev Quantiles of Closed Random Sets
Definition 11
The upper excursion set of the coverage function u ÞÑ P(u P Y) at level
α P [0, 1],

Qα(Y) := tu P Rd | P(u P Y) ě αu,

is called the Vorob’ev α-quantile of Y.

Qα(Y) is always a closed set.

Theorem 12 (F., Frongillo, Hlavinová, Rudloff (EJS, 2021))
(i)

L : U ˆ U Ñ [0,8], L(X,Y) = αµ(X zY) + (1 ´ α)µ(Y zX),
is a non-negative F-consistent loss function for Qα/

(ii) If Qα(F) = cl(Qą
α (F)) and Qα(F) = cl(int(Qα(F)) for all F P F , then Qα is

exhaustively elicitable on F .
Moreover, for any σ-finite positive measure µ on Rd such that EF[µ(Y)] ă 8 and
π(Qα(F)) ă 8 for all F P F , the restriction of L to the family
U1 : = tU P U | U = cl(int(U))u is a strictly F-consistent exhaustive loss function
for Qα.
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Interpretation of loss

L(X,Y) = αµ(X zY) + (1 ´ α)µ(Y zX)

Decomposition into
false positive X zY
false negative Y zX

Applications:
Evaluation of warnings (in spacetime) where asymmetric costs for
false positives and false negatives are present.
Pattern recognition in learning and diagnostics.
Mathematical statistics: A confidence set is actually a random set.
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Summary

Loss functions play a crucial role learning and in forecast assessment
and comparison.
They should be chosen in line with the target functional of interest.; They should be consistent.
Strict consistency ensures that the oracle regression function is
eventually learned. It ensures incentive compatible forecast
comparison.
We have revisited the elicitation problem.

§ CxLS are necessary for elicitability. The mode shows that they are not
generally sufficient.

§ Linear combinations of Bayes risks are elicitable.
§ A refinement of the CxLS property establishes that set-valued

functionals can either be selectively elicitable, exhaustively elicitable or
not elicitable at all.
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Omitted achievements, open questions, outlook

Omitted achievements:
§ Discussion of calibration assessment with identification functions.
§ Loss functions as measures of information (generalising the coefficient

of determination) (F & Pesenti, EJOR, 2023)
§ Multivariate loss functions (F & Hoga, JBES, 2023)
§ Loss functions in modern statistical learning (= machine learning)

(F, Merz, & Wüthrich, IME, 2023)

Open questions & outlook:
§ Replace strict consistency (ranking of expectations) by requirement

that average scores rank with high probability.
§ Better understanding of generative AI such as ChatGPT.

(“Small” input vector / prompt associated with very complex response)
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Further Reading

Scoring rules for probabilistic forecasts:
T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and
estimation.
Journal of the American Statistical Association, 102:359–378, 2007
Good introduction to elicitability:
T. Gneiting. Making and evaluating point forecasts.
Journal of the American Statistical Association, 106(494):746–762, 2011
Traditional and Comparative backtests:
N. Nolde and J. F. Ziegel. Elicitability and backtesting: Perspectives for banking
regulation.
The Annals of Applied Statistics, 11(4):1833–1874, 2017
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Additional References
A. Philip Dawid and Vladimir G. Vovk. Prequential probability: principles and
properties.
Bernoulli, 5(1):125–162, 2 1999

Z. Feinstein, B. Rudloff, and S. Weber. Measures of systemic risk.
SIAM Journal on Financial Mathematics, 8:672–708, 2017

C. Heinrich. The mode functional is not elicitable.
Biometrika, 101(1):245–251, 2014

I. Molchanov. Theory of Random Sets.
Probability Theory and Stochastic Modelling. Springer-Verlag London, London, 2
edition, 2017

I. Molchanov and F. Molinary. Random Sets in Econometrics.
Cambridge University Press, 2018

I. Steinwart, C. Pasin, R. Williamson, and S. Zhang. Elicitation and Identification
of Properties.
JMLR Workshop Conf. Proc., 35:1–45, 2014
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Thank you for your attention!

Looking forward to our discussion!
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